Publications

Results 126–150 of 155

Search results

Jump to search filters

V&V Framework Part 1 Release

Hills, Richard G.; Maniaci, David C.; Naughton, Jonathan

The objective of this document is to accurately predict, assess and optimize wind plant performance utilizing High Performance Modeling (HPC) tools developed in a community-based, open-source simulation environment to understand and accurately predict the fundamental physics and complex flows of the atmospheric boundary layer, interaction with the wind plant, as well as the response of individual turbines to the complex flows within that plant

More Details

Preliminary field test of the wind turbine wake imaging system

33rd Wind Energy Symposium

Herges, Thomas H.; Bossert, David B.; Schmitt, Randal L.; Maniaci, David C.; Glen, Crystal C.; Naughton, Brian T.

The Sandia Wake Imaging System is being developed to improve the spatial and temporal resolution capabilities of velocity measurements within the inflow and wake of wind turbines for the purpose of validating high-fidelity models. Doppler Global Velocimetry has been selected for use by the Sandia Wake Imaging System for its ability to scale to large field of view while still capturing instantaneous coherent structures. A set of field tests have been conducted over a 2 m × 2 m viewing area to investigate how well the system could scale to larger viewing areas applicable to planned wind turbine field testing. Successful velocity measurements of a surrogate 1 m diameter fan flow were achieved which compared favorably to independent sonic anemometer measurements. The system sensitivity limits were analyzed over a range of signal levels to calibrate radiometric modeling used to scale the system for deployment at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories through U.S. Department of Energy funding. Measurement results indicate the system was near the receiver shot noise limit and that an instantaneous velocity measurement with a 1 m/s noise is in all likelihood possible on a 5 m × 5 m viewing region at the Scaled Wind Farm Technology facility.

More Details

Effects of spanwise blade load distribution on wind turbine wake evolution

33rd Wind Energy Symposium

Yang, Xiaolei; Boomsmay, Aaron; Sotiropoulos, Fotis; Resor, Brian R.; Maniaci, David C.; Kelley, Christopher L.

In this paper, the effect of two different turbine blade designs on the wake characteristics was investigated using large-eddy simulation with an actuator line model. For the two different designs, the total axial load is nearly the same but the spanwise (radial) distributions are different. The one with higher load near the blade tip is denoted as Design A; the other is Design B. From the computed results, we observed that the velocity deficit from Design B is higher than that from Design A. The intensity of turbulence kinetic energy in the far wake is also higher for Design B. The effect of blade load distribution on the wind turbine axial and tangential induction factors was also investigated.

More Details

Dynamic wake meandering model comparison with varying fidelity models for wind turbine wake prediction

Annual Forum Proceedings - AHS International

Ennis, Brandon L.; Kelley, Christopher L.; Maniaci, David C.

The dynamic wake meandering model (DWM) is a common wake model used for fast prediction of wind farm power and loads. This model is compared to higher fidelity vortex method (VM) and actuator line large eddy simulation (AL-LES) model results. By looking independently at the steady wake deficit model of DWM, and performing a more rigorous comparison than averaged result comparisons alone can produce, the models and their physical processes can be compared. The DWM and VM results of wake deficit agree best in the mid-wake region due to the consistent recovery prior to wake breakdown predicted in the VM results. DWM and AL-LES results agree best in the far-wake due to the low recovery of the laminar flow field AL-LES simulation. The physical process of wake recovery in the DWM model differed from the higher fidelity models and resulted solely from wake expansion downstream, with no momentum recovery up to 10 diameters. Sensitivity to DWM model input boundary conditions and their effects are shown, with greatest sensitivity to the rotor loading and to the turbulence model.

More Details

Analysis of the impact of leading edge surface degradation on wind turbine performance

33rd Wind Energy Symposium

Langel, Christopher M.; Chow, Raymond; Hurley, Owen F.; Van Dam, C.P.; Ehrmann, Robert S.; White, Edward B.; Maniaci, David C.

Over time it has been reported wind turbine power output can diminish below manufacturers promised levels. This is clearly undesirable from an operator standpoint, and can also put pressure on turbine companies to make up the difference. A likely explanation for the discrepancy in power output is the contamination of the leading edge due to environmental conditions creating surfaces much coarser than intended. To examine the effects of airfoil leading edge roughness, a comprehensive study has been performed both experimentally and computationally on a NACA 633 - 418 airfoil. A description of the experimental setup and test matrix are provided, along with an outline of the computational roughness amplification model used to simulate rough configurations. The experimental investigation serves to provide insight into the changes in measurable airfoil properties such as lift, drag, and boundary layer transition location. The computational effort is aimed at using the experimental results to calibrate a roughness model that has been implemented in an unsteady RANS solver. Furthermore, a blade element momentum code was used to assess the impact on the performance of a turbine as whole due to discrepancies in clean vs. soiled airfoil characteristics. The results have implications in predicting the power loss due to leading edge surface roughness, and can help to establish an upper bound on admissible surface contamination levels.

More Details

Numerical simulations of subscale wind turbine rotor inboard airfoils at low Reynolds number

33rd Wind Energy Symposium

Blaylock, Myra L.; Maniaci, David C.; Resor, Brian R.

New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally vary from 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale, but more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. When used on a sub-scale rotor, Reynolds number regimes are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with associated numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations and to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.

More Details

Effects of increasing tip velocity on wind turbine rotor design

Resor, Brian R.; Maniaci, David C.; Berg, Jonathan C.; Richards, Phillip W.

A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

More Details

Definition of the National Rotor Testbed: An Aeroelastically relevant research-scale wind turbine rotor

32nd ASME Wind Energy Symposium

Resor, Brian R.; Maniaci, David C.

Sandia is designing a set of modern, research-quality blades for use on the V27 turbines at the DOE/SNL SWiFT site at Texas Tech University in Lubbock, Texas. The new blades will replace OEM blades and will be a publicly available resource for subscale rotor research. Features of the new blades do not represent the optimal design for a V27 rotor, but are determined by aeroelastic scaling of relevant parameters and design drivers from a representative megawatt-scale rotor. Scaling parameters and design drivers are chosen based two factors: 1) retrofit to the existing SWiFT turbines and 2) replicate rotor loads and wake formation of a utility scale turbine to support turbine -turbine interaction research at multiple scales. The blades are expected to provide a publicly available baseline blade design which will enable increased participation in future blade research as well as accelerated hardware manufacture and test for demonstration of innovation. This paper discusses aeroelastic scaling approaches, a rotor design process and a summary of design concepts.

More Details
Results 126–150 of 155
Results 126–150 of 155