Publications

Results 51–70 of 70

Search results

Jump to search filters

Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve

Nemer, Martin N.; Lord, David L.; MacDonald, Terry L.

Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are "sour" by SPR standards indicating they contain total sulfur > 0.50 wt %.

More Details

Analysis of SPR salt cavern remedial leach program 2013

Weber, Paula D.; Flores, Karen A.; Lord, David L.

The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of storage capacity over time. Maintenance of oil storage capacity requires periodic controlled leaching named remedial leach. The 30 MMB sale in summer 2011 provided space available to facilitate leaching operations. The objective of this report is to present the results and analyses of remedial leach activity at the SPR following the 2011 sale until mid-January 2013. This report focuses on caverns BH101, BH104, WH105 and WH106. Three of the four hanging strings were damaged resulting in deviations from normal leach patterns; however, the deviations did not affect the immediate geomechanical stability of the caverns. Significant leaching occurred in the toes of the caverns likely decreasing the number of available drawdowns until P/D ratio criteria are met. SANSMIC shows good agreement with sonar data and reasonably predicted the location and size of the enhanced leaching region resulting from string breakage.

More Details

Bryan Mound SPR cavern 113 remedial leach stage 1 analysis

Weber, Paula D.; Lord, David L.

The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage volume in the existing Bryan Mound 113 cavern from a starting volume of 7.4 million barrels (MMB) to its design volume of 11.2 MMB. The first stage was terminated several months earlier than expected in August, 2012, as the upper section of the leach zone expanded outward more quickly than design. The oil-brine interface was then re-positioned with the intent to resume leaching in the second stage configuration. This report evaluates the as-built configuration of the cavern at the end of the first stage, and recommends changes to the second stage plan in order to accommodate for the variance between the first stage plan and the as-built cavern. SANSMIC leach code simulations are presented and compared with sonar surveys in order to aid in the analysis and offer projections of likely outcomes from the revised plan for the second stage leach.

More Details

Quantifying VOC emissions for the strategic petroleum reserve

Knowlton, Robert G.; Lord, David L.

A very important aspect of the Department of Energys (DOEs) Strategic Petroleum Reserve (SPR) program is regulatory compliance. One of the regulatory compliance issues deals with limiting the amount of volatile organic compounds (VOCs) that are emitted into the atmosphere from brine wastes when they are discharged to brine holding ponds. The US Environmental Protection Agency (USEPA) has set limits on the amount of VOCs that can be discharged to the atmosphere. Several attempts have been made to quantify the VOC emissions associated with the brine ponds going back to the late 1970s. There are potential issues associated with each of these quantification efforts. Two efforts were made to quantify VOC emissions by analyzing VOC content of brine samples obtained from wells. Efforts to measure air concentrations were mentioned in historical reports but no data have been located to confirm these assertions. A modeling effort was also performed to quantify the VOC emissions. More recently in 2011- 2013, additional brine sampling has been performed to update the VOC emissions estimate. An analysis of the statistical confidence in these results is presented here. Arguably, there are uncertainties associated with each of these efforts. The analysis herein indicates that the upper confidence limit in VOC emissions based on recent brine sampling is very close to the 0.42 ton/MMB limit used historically on the project. Refining this estimate would require considerable investment in additional sampling, analysis, and monitoring. An analysis of the VOC emissions at each site suggests that additional discharges could be made and stay within current regulatory limits.

More Details

U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012

Lord, David L.; Roberts, Barry L.; Lord, Anna S.; Sobolik, Steven R.; Park, Byoung P.

This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

More Details

Strategic Petroleum Reserve equation of state model development : current performance against measured data

Lord, David L.

This report documents the progression of crude oil phase behavior modeling within the U.S. Strategic Petroleum Reserve vapor pressure program during the period 2004-2009. Improvements in quality control on phase behavior measurements in 2006 coupled with a growing body of degasification plant operations data have created a solid measurement baseline that has served to inform and significantly improve project understanding on phase behavior of SPR oils. Systematic tuning of the model based on proven practices from the technical literature have shown to reduce model bias and match observed data very well, though this model tuning effort is currently in process at SPR and based on preliminary data. The current report addresses many of the steps that have helped to build a strong baseline of data coupled with sufficient understanding of model features so that calibration is possible.

More Details

U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report

Lord, David L.

This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

More Details

Summary of Degas II performance at the US Strategic Petroleum Reserve Big Hill site

Lord, David L.

Crude oil stored at the US Strategic Petroleum Reserve (SPR) requires mitigation procedures to maintain oil vapor pressure within program delivery standards. Crude oil degasification is one effective method for lowering crude oil vapor pressure, and was implemented at the Big Hill SPR site from 2004-2006. Performance monitoring during and after degasification revealed a range of outcomes for caverns that had similar inventory and geometry. This report analyzed data from SPR degasification and developed a simple degas mixing (SDM) model to assist in the analysis. Cavern-scale oil mixing during degassing and existing oil heterogeneity in the caverns were identified as likely causes for the range of behaviors seen. Apparent cavern mixing patterns ranged from near complete mixing to near plug flow, with more mixing leading to less efficient degassing due to degassed oil re-entering the plant before 100% of the cavern oil volume was processed. The report suggests that the new cavern bubble point and vapor pressure regain rate after degassing be based on direct in-cavern measurements after degassing as opposed to using the plant outlet stream properties as a starting point, which understates starting bubble point and overstates vapor pressure regain. Several means to estimate the cavern bubble point after degas in the absence of direct measurement are presented and discussed.

More Details

DRSPALL :spallings model for the Waste Isolation Pilot Plant 2004 recertification

Lord, David L.

This report presents a model to estimate the spallings releases for the Waste Isolation Pilot Plant Performance Assessment (WIPP PA). A spallings release in the context of WIPP PA refers to a portion of the solid waste transported from the subsurface repository to the ground surface due to inadvertent oil or gas drilling into the WIPP repository at some time after site closure. Some solid waste will be removed by the action of the drillbit and drilling fluid; this waste is referred to as cuttings and cavings. If the repository is pressurized above hydrostatic at the time of intrusion, solid waste material local to the borehole may be subject to mechanical failure and entrainment in high-velocity gases as the repository pressure is released to the borehole. Solid material that fails and is transported into the wellbore and thus to the surface comprise the spallings releases. The spallings mechanism is analogous to a well blowout in the modern oil and gas drilling industry. The current spallings conceptual model and associated computer code, DRSPALL, were developed for the 2004 recertification because the prior spallings model used in the 1996 WIPP Compliance Certification Application (CCA) was judged by an independent peer review panel as inadequate (DOE 1996, 9.3.1). The current conceptual model for spallings addresses processes that take place several minutes before and after a borehole intrusion of a WIPP waste room. The model couples a pipe-flow wellbore model with a porous flow repository model, allowing high-pressure gas to flow from the repository to the wellbore through a growing cavity region at the well bottom. An elastic stress model is applied to the porous solid domain that allows for mechanical failure of repository solids if local tensile stress exceeds the tensile strength of the waste. Tensile-failed solids may be entrained into the wellbore flow stream by a fluidized bed model, in which case they are ultimately transported to the land surface comprising a release. In July 2003, DOE/SNL presented the spallings conceptual model to a independent peer review panel in accordance with NUREG 1297 guidelines (NRC, 1988). The panel ultimately judged the model as adequate for implementation in WIPP PA (Yew et al., 2003). This report documents the spallings model history from 1997 to the implementation of DRSPALL in the 2004 Compliance Recertification Application (CRA) (DOE, 2004). The scope of this report includes descriptions of the conceptual model, numerical model, verification and validation techniques, model sensitivity studies, and WIPP PA spallings results as presented in the 2004 CRA.

More Details

Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve

Lord, David L.

Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

More Details

Feasibility report on alternative methods for cooling cavern oils at the U.S. Strategic Petroleum Reserve

Lord, David L.

Oil caverns at the U.S. Strategic Petroleum Reserve (SPR) are subjected to geothermal heating from the surrounding domal salt. This process raises the temperature of the crude oil from around 75 F upon delivery to SPR to as high as 130 F after decades of storage. While this temperature regime is adequate for long-term storage, it poses challenges for offsite delivery, with warm oil evolving gases that pose handling and safety problems. SPR installed high-capacity oil coolers in the mid-1990's to mitigate the emissions problem by lowering the oil delivery temperature. These heat exchanger units use incoming raw water as the cooling fluid, and operate only during a drawdown event where incoming water displaces the outgoing oil. The design criteria for the heat exchangers are to deliver oil at 100 F or less under all drawdown conditions. Increasing crude oil vapor pressures due in part to methane intrusion in the caverns is threatening to produce sufficient emissions at or near 100 F to cause the cooled oil to violate delivery requirements. This impending problem has initiated discussion and analysis of alternative cooling methods to bring the oil temperature even lower than the original design basis of 100 F. For the study described in this report, two alternative cooling methods were explored: (1) cooling during a limited drawdown, and (2) cooling during a degas operation. Both methods employ the heat exchangers currently in place, and do not require extra equipment. An analysis was run using two heat transfer models, HEATEX, and CaveMan, both developed at Sandia National Laboratories. For cooling during a limited drawdown, the cooling water flowrate through the coolers was varied from 1:1 water:oil to about 3:1, with an increased cooling capacity of about 3-7 F for the test cavern Bryan Mound 108 depending upon seasonal temperature effects. For cooling in conjunction with a degas operation in the winter, cavern oil temperatures for the test cavern Big Hill 102 were cooled sufficiently that the cavern required about 9 years to return to the temperature prior to degas. Upon reviewing these results, the authors recommended to the U.S. Department of Energy that a broader study of the cooling during degas be pursued in order to examine the potential benefits of cooling on all caverns in the current degasification schedule.

More Details
Results 51–70 of 70
Results 51–70 of 70