Publications

Results 101–125 of 567

Search results

Jump to search filters

COVID-19 LDRD Project Summaries

Treece, Amy; Corbin, William; Caskey, Susan; Krishnakumar, Raga; Williams, Kelly P.; Branch, Darren W.; Harmon, Brooke N.; Polsky, Ronen; Bauer, Travis L.; Finley, Patrick D.; Jeffers, Robert; Safta, Cosmin; Makvandi, Monear; Laird, Carl; Domino, Stefan P.; Ho, Clifford K.; Grillet, Anne M.; Pacheco, Jose L.; Nemer, Martin; Rossman, Grant A.; Koplow, Jeffrey; Celina, Mathew C.; Jones, Brad H.; Burton, Patrick D.; Haggerty, Ryan P.; Jacobs-Gedrim, Robin B.; Thelen, Paul M.

Sandia National Laboratories currently has 27 COVID-related Laboratory Directed Research & Development (LDRD) projects focused on helping the nation during the pandemic. These LDRD projects cross many disciplines including bioscience, computing & information sciences, engineering science, materials science, nanodevices & microsystems, and radiation effects & high energy density science.

More Details

Testing and simulations of spatial and temporal temperature variations in a particle-based thermal energy storage bin

ASME 2020 14th International Conference on Energy Sustainability Es 2020

Sment, Jeremy N.I.; Martinez, Mario J.; Albrecht, Kevin; Ho, Clifford K.

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories is conducting research on a Generation 3 Particle Pilot Plant (G3P3) that uses falling sand-like particles as the heat transfer medium. The system will include a thermal energy storage (TES) bin with a capacity of 6 MWht¬ requiring ~120,000 kg of flowing particles. Testing and modeling were conducted to develop a validated modeling tool to understand temporal and spatial temperature distributions within the storage bin as it charges and discharges. Flow and energy transport in funnel-flow was modeled using volume averaged conservation equations coupled with level set interface tracking equations that prescribe the dynamic geometry of particle flow within the storage bin. A thin layer of particles on top of the particle bed was allowed to flow toward the center and into the flow channel above the outlet. Model results were validated using particle discharge temperatures taken from thermocouples mounted throughout a small steel bin. The model was then used to predict heat loss during charging, storing, and discharging operational modes at the G3P3 scale. Comparative results from the modeling and testing of the small bin indicate that the model captures many of the salient features of the transient particle outlet temperature over time.

More Details

Particle flow testing of a multistage falling particle receiver concept: Staggered angle iron receiver (stair)

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Yue, Lindsey; Schroeder, Nathaniel R.; Ho, Clifford K.

Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this work, a staggered angle iron receiver concept is investigated, with the goals of increasing particle curtain stability and opacity in a receiver. The concept consists of angle iron-shaped troughs placed in line with a falling particle curtain in order to collect particles and re-release them, decreasing the downward velocity of the particles and the curtain spread. A particle flow test apparatus has been fabricated. The effect of staggered angle iron trough geometry, orientation, and position on the opacity and uniformity of a falling particle curtain for different particle linear mass flow rates is investigated using the particle flow test apparatus. For the baseline free falling curtain and for different trough configurations, particle curtain transmissivity is measured, and profile images of the particle curtain are taken. Particle mass flow rate and trough position affect curtain transmissivity more than trough orientation and geometry. Optimal trough position for a given particle mass flow rate can result in improved curtain stability and decreased transmissivity. The case with a slot depth of 1/4”, hybrid trough geometry at 36” below the slot resulted in the largest improvement over the baseline curtain: 0.40 transmissivity for the baseline and 0.14 transmissivity with the trough. However, some trough configurations have a detrimental effect on curtain stability and result in increased curtain transmissivity and/or substantial particle bouncing.

More Details

Finite element analysis of a moving packed-bed particle-to-sco2 heat exchanger testing and performance

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Delovato, Nicolas; Albrecht, Kevin; Ho, Clifford K.

A focus in the development of the next generation of concentrating solar power (CSP) plants is the integration of high temperature particle receivers with improved efficiency supercritical carbon dioxide (sCO2) power cycles. The feasibility of this type of system depends on the design of a particle-to-sCO2 heat exchanger. This work presents a finite element analysis (FEA) model to analyze the thermal performance of a particle-to-sCO2 heat exchanger for potential use in a CSP plant. The heat exchanger design utilizes a moving packed bed of particles in crossflow with sCO2 which flows in a serpentine pattern through banks of microchannel plates. The model contains a thermal analysis to determine the heat exchanger's performance in transferring thermal energy from the particle bed to the sCO2. Test data from a prototype heat exchanger was used to verify the performance predictions of the model. The verification of the model required a multitude of sensitivity tests to identify where fidelity needed to be added to reach agreement between the experimental and simulated results. For each sensitivity test in the model, the effect on the performance is discussed. The model was shown to be in good agreement on the overall heat transfer coefficient of the heat exchanger with the experimental results for a low temperature set of conditions with a combination of added sensitives. A set of key factors with a major impact on the performance of the heat exchanger are discussed.

More Details

Finite element analysis of a moving packed-bed particle-to-sco2 heat exchanger testing and performance

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Delovato, Nicolas; Albrecht, Kevin; Ho, Clifford K.

A focus in the development of the next generation of concentrating solar power (CSP) plants is the integration of high temperature particle receivers with improved efficiency supercritical carbon dioxide (sCO2) power cycles. The feasibility of this type of system depends on the design of a particle-to-sCO2 heat exchanger. This work presents a finite element analysis (FEA) model to analyze the thermal performance of a particle-to-sCO2 heat exchanger for potential use in a CSP plant. The heat exchanger design utilizes a moving packed bed of particles in crossflow with sCO2 which flows in a serpentine pattern through banks of microchannel plates. The model contains a thermal analysis to determine the heat exchanger's performance in transferring thermal energy from the particle bed to the sCO2. Test data from a prototype heat exchanger was used to verify the performance predictions of the model. The verification of the model required a multitude of sensitivity tests to identify where fidelity needed to be added to reach agreement between the experimental and simulated results. For each sensitivity test in the model, the effect on the performance is discussed. The model was shown to be in good agreement on the overall heat transfer coefficient of the heat exchanger with the experimental results for a low temperature set of conditions with a combination of added sensitives. A set of key factors with a major impact on the performance of the heat exchanger are discussed.

More Details

High-temperature particle flow testing in parallel plates for particle-to-supercritical Co2 heat exchanger applications

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Laubscher, Hendrik F.; Albrecht, Kevin; Ho, Clifford K.

Realizing cost-effective, dispatchable, renewable energy production using concentrated solar power (CSP) relies on reaching high process temperatures to increase the thermal-to-electrical efficiency. Ceramic based particles used as both the energy storage medium and heat transfer fluid is a promising approach to increasing the operating temperature of next generation CSP plants. The particle-to-supercritical CO2 (sCO2) heat exchanger is a critical component in the development of this technology for transferring thermal energy from the heated ceramic particles to the sCO2 working fluid of the power cycle. The leading design for the particle-to-sCO2 heat exchanger is a shell-and-plate configuration. Currently, design work is focused on optimizing the performance of the heat exchanger through reducing the plate spacing. However, the particle channel geometry is limited by uniformity and reliability of particle flow in narrow vertical channels. Results of high temperature experimental particle flow testing are presented in this paper.

More Details

Testing and simulations of spatial and temporal temperature variations in a particle-based thermal energy storage bin

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Sment, Jeremy N.I.; Martinez, Mario J.; Albrecht, Kevin; Ho, Clifford K.

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories is conducting research on a Generation 3 Particle Pilot Plant (G3P3) that uses falling sand-like particles as the heat transfer medium. The system will include a thermal energy storage (TES) bin with a capacity of 6 MWht¬ requiring ~120,000 kg of flowing particles. Testing and modeling were conducted to develop a validated modeling tool to understand temporal and spatial temperature distributions within the storage bin as it charges and discharges. Flow and energy transport in funnel-flow was modeled using volume averaged conservation equations coupled with level set interface tracking equations that prescribe the dynamic geometry of particle flow within the storage bin. A thin layer of particles on top of the particle bed was allowed to flow toward the center and into the flow channel above the outlet. Model results were validated using particle discharge temperatures taken from thermocouples mounted throughout a small steel bin. The model was then used to predict heat loss during charging, storing, and discharging operational modes at the G3P3 scale. Comparative results from the modeling and testing of the small bin indicate that the model captures many of the salient features of the transient particle outlet temperature over time.

More Details
Results 101–125 of 567
Results 101–125 of 567