High-Temperature Falling Particle Receiver with Thermal Storage
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIP Conference Proceedings
A set of on-sun experiments was performed on a 1 MWth cavity-type falling particle receiver at Sandia National Laboratories. A computational model of the receiver was developed to evaluate its ability to predict the receiver performance during these experiments and to quantify the thermal losses from different mechanisms. Mean particle outlet temperatures and the experimental receiver thermal efficiencies were compared against values computed in the computational model. External winds during the experiments were found to significantly affect the receiver thermal efficiency, and advective losses from hot air escaping the receiver domain were found to be the most significant contribution to losses from the receiver. Losses from all other mechanisms including radiative losses amounted to less than 10% of the total incident thermal power.
AIP Conference Proceedings
Pyromark® 2500, manufactured by Tempil, is currently the industry standard for high solar absorptive receiver coatings for concentrating solar power towers. However, Pyromark has been reported to degrade if not applied properly or exposed to temperatures exceeding 700 °C over a period of time. However, it is not apparent if such degradation is due to a particular aspect or aspects of the deposition process, which may vary from plant to plant. Many variables factor in to the performance of Pyromark, e.g. deposition method, drying time, curing parameters (ramp rate, homogeneous heating, time at temperature.), and coating thickness. Identifying the factors with the most influence on coating performance and durability will help guide the application of Pyromark to receivers to minimize degradation over time. The relationships between coating quality and optical properties with deposition/curing parameters on Haynes 230 substrates were assessed using statistical analysis of variance (ANOVA) techniques for repeated measures. These ANOVA techniques were designed to detect differences in treatment effects on the response at each of the aging cycles. The analyses found that coating thickness, curing ramp rate, and dwell time had the most effect on coating quality.
Aip Conference Proceedings
A set of on-sun experiments was performed on a 1 MW
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.