Ultrasonic waves can be used to transfer power and data to electronic devices in sealed metallic enclosures. Two piezoelectric transducers are used to transmit and receive elastic waves that propagate through the metal. For an efficient power transfer, both transducers are typically bonded to the metal or coupled with a gel which limits the device portability. We present an ultrasonic power transfer system with a detachable transmitter that uses a dry elastic layer and a magnetic joint for efficient coupling. We show that the system can deliver more than 2 W of power to an electric load with 50% efficiency.
Ultrasonic waves can be used to transfer power and data to electronic devices in sealed metallic enclosures. Two piezoelectric transducers are used to transmit and receive elastic waves that propagate through the metal. For an efficient power transfer, both transducers are typically bonded to the metal or coupled with a gel which limits the device portability. We present an ultrasonic power transfer system with a detachable transmitter that uses a dry elastic layer and a magnetic joint for efficient coupling. We show that the system can deliver more than 2 W of power to an electric load with 50% efficiency.
For systems that require complete metallic enclosures, it is impossible to power and communicate with interior electronics using conventional electromagnetic techniques. Instead, pairs of ultrasonic transducers can be used to send and receive elastic waves through the enclosure, forming an equivalent electrical transmission line that bypasses the Faraday cage effect. These mechanical communication systems introduce the possibility for electromechanical crosstalk between channels on the same barrier, in which receivers output erroneous electrical signals due to ultrasonic guided waves generated by transmitters in adjacent communication channels. To minimize this crosstalk, this work investigates the use of a phononic crystal/metamaterial machined into the barrier via periodic grooving. Barriers with simultaneous ultrasonic power and data transfer are fabricated and tested to measure the effect of grooving on crosstalk between channels.
Lab based x-ray phase contrast imaging (XPCI) systems have historically focused on medical applications, but there is growing interest in material science applications for non-destructive analysis of low density materials. Extending this imaging technique to higher density materials or larger samples requires higher aspect ratio gratings, to allow the use of a higher energy x-ray source. In this work, we demonstrate the use of anisotropic silicon (Si) etching in potassium hydroxide (KOH), to achieve extremely high aspect ratio gratings. This method has been shown to be effective in fabricating deep, uniform gratings by taking advantage of the etch selectivity of differing crystalline planes of silicon. Our work has demonstrated a method for determining Si crystalline plane directions, specific to (110) Si wafers, enabling high alignment accuracy of the etch mask to these crystalline planes.
State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. We have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be applied to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.
Magnetostrictive Co77Fe23 films are fully suspended to produce free-standing, clamped-clamped, microbeam resonators. A negative or positive shift in the resonant frequency is observed for magnetic fields applied parallel or perpendicular to the length of the beam, respectively, confirming the magnetoelastic nature of the shift. Notably, the resonance shifts linearly with higher-bias fields oriented perpendicular to the beam's length. Domain imaging elucidates the distinction in the reversal processes along the easy and hard axes. Together, these results suggest that through modification of the magnetic anisotropy, the frequency shift and angular dependence can be tuned, producing highly magnetic-field-sensitive resonators.