Publications

Results 26–50 of 104

Search results

Jump to search filters

Angle of Incidence Characterization of Six Laminated Solar Cells for 2020 DTU Fotonik Inter-Laboratory Comparison Study

King, Bruce H.; Robinson, Charles D.

Photovoltaic energy prediction models include functions or modifiers to account for sun angle reflection losses. These functions may be known interchangeably as Angle of Incidence (AOI) or Incident Angle Modifier (IAM). While standards exist, there is no universally accepted single best practice for developing these functions. They can be generated through characterization of representative modules or single cells, in natural sunlight or indoors using simulated light sources. Repeatability of measurements and the viability of cross-laboratory comparisons are critical to confidence in validation of both methods. To investigate the differences between methods and labs, The Technical University of Denmark (DTU) initiated an international round-robin test comparison between several key test labs with AOI measurement capability. A total of six minimodules were provided in three different cell/interconnect/backsheet combinations. Sandia characterized these minimodules using methods developed over two decades specifically for the outdoor characterization of full-size photovoltaic modules. This report documents the characterization results, summarizes key observations and tabulates the processed data for comparison to results provided by other characterization labs.

More Details

Differential Analysis of the Angle of Incidence Response of Utility-Grade PV Modules

Conference Record of the IEEE Photovoltaic Specialists Conference

King, Bruce H.; Robinson, Charles D.

Anti-reflective coatings (ARCs) are commonly applied to commercial modules to reduce reflection losses and improve energy harvest. Relative performance at low incidence angle is often indistinguishable between different modules and it is only at high incidence angle that performance becomes differentiated. It is also precisely in this range that accurate measurements are the most difficult to obtain, complicating efforts to compare the benefits of different coatings. In this study, the performance of multiple commercial modules with different coatings were compared. A differential approach was employed, facilitating relative comparisons between test devices and a common reference. Using this method, performance differences at high incidence angles could be visualized and quantified. Differential analysis was extended to multiple system performance models in order to predict and quantify potential improvements in annual energy harvest. Improvements were observed upwards of 1% seasonally and 0.5% annually for the best performing coatings. 10° fixed tilt systems were seen to potentially benefit the most from ARCs, while single axis trackers benefitted the least.

More Details

Nishati Prototype 72-Cell Endurance Modules (Test Report)

King, Bruce H.; Yellowhair, Julius; Robinson, Charles D.

US Manufacturer Nishati provided three prototype, 72-cell photovoltaic modules to Sandia for characterization under the US Department of Energy Small Business Voucher program. Nishati is developing the Endurance© product to address the stringent requirements associated with PV system installations sited near airports and military bases. These prototype modules are uniquely constructed of a polymeric matrix and an internal honeycomb structural element. Target features of the module design are reduced reflectivity from the front surface and reduced weight. Sandia applied a variety of in-house characterization methods to these modules with the goal of validating performance and identifying any areas for improvement. Reflectance testing revealed extremely low specular reflection, dramatically surpassing the performance of industry standard PV panels. Electrical performance testing validated performance in line with expectations for similar size and power class modules. Complimentary to reflection testing, outdoor angle of incidence testing indicated performance far exceeding expectations for industry standard PV panels. It is possible that the extremely low reflectance properties of these modules will convey an advantage in annual energy production in comparison to industry standard modules. Detailed performance modeling and experimental field validation would be required to verify this possible advantage. During the course of this testing, no obvious deficiencies in this module design were discovered. It is recommended that Nishati and Sandia proceed to the final Task associated with the SBV award. This final task will involve fielding modules at Sandia for reliability and energy production validation.

More Details

Determining Series Resistance for Equivalent Circuit Models of a PV Module

IEEE Journal of Photovoltaics

Hansen, Clifford H.; King, Bruce H.

Literature describes various methods for determining a series resistance for a photovoltaic device from measured IV curves. We investigate use of these techniques to estimate the series resistance parameter for a single diode equivalent circuit model. With simulated IV curves we demonstrate that the series resistance values obtained by these techniques differ systematically from the known series resistance parameter values used to generate the curves, indicating that these methods are not suitable for determining the series resistance parameter for the single diode model equation. We present an alternative method to determine the series resistance parameter jointly with the other parameters for the single diode model equation, and demonstrate the accuracy and reliability of this technique in the presence of measurement errors.

More Details

Comparative Angle of Incidence Characterization of Utility Grade Photovoltaic Modules

King, Bruce H.; Robinson, Charles D.

Angle of incidence response of a photovoltaic module describes its light gathering capability when incident sunlight is at an orientation other than normal to the module's surface. At low incident angles (i.e. close to normal), most modules have similar responses. However, at increasing incident angles, reflective losses dominate response and relative module performance becomes differentiated. Relative performance in this range is important for understanding the potential power output of utility - scale ph otovoltaic systems. In this report, we document the relative angle of incidence response of four utility - grade panels to each other and to four First Solar modules. We found that response was nearly identical between all modules up to an incident angle of ~55°. At higher angles, differences of up to 5% were observed. A module from Yingli was the best performing commercial module while a First Solar test module with a non - production anti - reflective coating was the best overall performer. This page left blank

More Details
Results 26–50 of 104
Results 26–50 of 104