Publications

Results 26–50 of 50

Search results

Jump to search filters

Ultrasensitive multi-species detection of CRISPR-Cas9 by a portable centrifugal microfluidic platform

Analytical Methods

Phaneuf, Christopher R.; Seamon, Kyle J.; Eckles, Tyler P.; Sinha, Anchal; Schoeniger, Joseph S.; Harmon, Brooke N.; Meagher, Robert M.; Koh, Chung-Yan K.

The discovery of the RNA-guided DNA nuclease CRISPR-Cas9 has enabled the targeted editing of genomes from diverse organisms, but the permanent and inheritable nature of genome modification also poses immense risks. The potential for accidental exposure, malicious use, or undesirable persistence of Cas9 therapeutics and off-target genome effects highlight the need for detection assays. Here we report a centrifugal microfluidic platform for the measurement of both Cas9 protein levels and nuclease activity. Because Cas9 from many bacterial species have been adapted for biotechnology applications, we developed the capability to detect Cas9 from the widely-used S. pyogenes, as well as S. aureus, N. meningitidis, and S. thermophilus using commercially-available antibodies. Further, we show that the phage-derived anti-CRISPR protein AcrIIC1, which binds to Cas9 from several species, can be used as a capture reagent to broaden the species range of detection. As genome modification generally requires Cas9 nuclease activity, a fluorescence-based sedimentation nuclease assay was also incorporated to allow the sensitive and simultaneous measurement of both Cas9 protein and activity in a single biological sample.

More Details

Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity

Analytical Chemistry

Harmon, Brooke N.; Seamon, Kyle J.; Saada, Edwin A.; Light, Yooli K.; Schoeniger, Joseph S.

The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.

More Details

Timescale Separation of Positive and Negative Signaling Creates History-Dependent Responses to IgE Receptor Stimulation

Scientific Reports

Harmon, Brooke N.; Chylek, Lily A.; Liu, Yanli; Mitra, Eshan D.; Mahajan, Avanika; Saada, Edwin A.; Schudel, Benjamin R.; Holowka, David A.; Baird, Barbara A.; Wilson, Bridget S.; Hlavacek, William S.; Singh, Anup K.

The high-Affinity receptor for IgE expressed on the surface of mast cells and basophils interacts with antigens, via bound IgE antibody, and triggers secretion of inflammatory mediators that contribute to allergic reactions. To understand how past inputs (memory) influence future inflammatory responses in mast cells, a microfluidic device was used to precisely control exposure of cells to alternating stimulatory and non-stimulatory inputs. We determined that the response to subsequent stimulation depends on the interval of signaling quiescence. For shorter intervals of signaling quiescence, the second response is blunted relative to the first response, whereas longer intervals of quiescence induce an enhanced second response. Through an iterative process of computational modeling and experimental tests, we found that these memory-like phenomena arise from a confluence of rapid, short-lived positive signals driven by the protein tyrosine kinase Syk; slow, long-lived negative signals driven by the lipid phosphatase Ship1; and slower degradation of Ship1 co-factors. This work advances our understanding of mast cell signaling and represents a generalizable approach for investigating the dynamics of signaling systems.

More Details

A Genome-Wide RNA Interference Screen Identifies a Role for Wnt/β-Catenin Signaling during Rift Valley Fever Virus Infection

Journal of Virology

Negrete, Oscar N.; Harmon, Brooke N.; Bird, Sara W.; Hatch, Anson H.

Rift Valley fever virus (RVFV) is an arbovirus within the Bunyaviridae family capable of causing serious morbidity and mortality in humans and livestock. To identify host factors involved in bunyavirus replication, we employed genome-wide RNA interference (RNAi) screening and identified 381 genes whose knockdown reduced infection. The Wnt pathway was the most represented pathway when gene hits were functionally clustered. With further investigation, we found that RVFV infection activated Wnt signaling, was enhanced when Wnt signaling was preactivated, was reduced with knockdown of β-catenin, and was blocked using Wnt signaling inhibitors. Similar results were found using distantly related bunyaviruses La Crosse virus and California encephalitis virus, suggesting a conserved role for Wnt signaling in bunyaviral infection. We propose a model where bunyaviruses activate Wnt-responsive genes to regulate optimal cell cycle conditions needed to promote efficient viral replication. The findings in this study should aid in the design of efficacious host-directed antiviral therapeutics.

More Details

Microfluidic platforms for RNA interference screening of virus-host interactions

Lab on a Chip

Schudel, Benjamin R.; Harmon, Brooke N.; Abhyankar, Vinay V.; Pruitt, Benjamin W.; Negrete, Oscar N.; Singh, Anup K.

RNA interference (RNAi) is a powerful tool for functional genomics with the capacity to comprehensively analyze host-pathogen interactions. High-throughput RNAi screening is used to systematically perturb cellular pathways and discover therapeutic targets, but the method can be tedious and requires extensive capital equipment and expensive reagents. To aid in the development of an inexpensive miniaturized RNAi screening platform, we have developed a two part microfluidic system for patterning and screening gene targets on-chip to examine cellular pathways involved in virus entry and infection. First, a multilayer polydimethylsiloxane (PDMS)-based spotting device was used to array siRNA molecules into 96 microwells targeting markers of endocytosis, along with siRNA controls. By using a PDMS-based spotting device, we remove the need for a microarray printer necessary to perform previously described small scale (e.g. cellular microarrays) and microchip-based RNAi screening, while still minimizing reagent usage tenfold compared to conventional screening. Second, the siRNA spotted array was transferred to a reversibly sealed PDMS-based screening platform containing microchannels designed to enable efficient cell loading and transfection of mammalian cells while preventing cross-contamination between experimental conditions. Validation of the screening platform was examined using Vesicular stomatitis virus and emerging pathogen Rift Valley fever virus, which demonstrated virus entry pathways of clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively. The techniques here are adaptable to other well-characterized infection pathways with a potential for large scale screening in high containment biosafety laboratories. © 2013 The Royal Society of Chemistry.

More Details

Microfluidic devices to elucidate human gene participation in infection of rift valley fever virus

15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011

Schudel, Benjamin R.; Negrete, Oscar N.; Harmon, Brooke N.; Pruitt, Benjamin W.; Singh, Anup K.

A microfluidic RNA interference screening device was designed to study which genes are involved in Rift Valley Fever Virus (RVFV) infection. Spots of small interfering RNA (siRNA) are manually spotted onto a glass microscope slide, and aligned to a screening device designed to accommodate cell seeding, siRNA transfection, cell culture, virus infection and imaging analysis. This portable and disposable PDMS-based microfluidic device for RNAi screening was designed for a 96-well library of transfection against variety of gene targets. Current results show transfection of GFP-22 siRNA within the device, as compared to controls, which inhibit the expression of GFP produced by recombinant RVFV. This technique can be applied to host-pathogen interactions for highly dangerous systems in BSL-3/4 laboratories, where bulky robotic equipment is not ideal.

More Details
Results 26–50 of 50
Results 26–50 of 50