X-ray Spectrum Imaging of Sintering Additives in Thick-Film (PbLa)(ZrTi)O3
Abstract not provided.
Abstract not provided.
Nano Letters
Abstract not provided.
Crystal Growth and Design
We have systematically studied the effect of pH and 1,3-diaminopropane additive concentration on the morphology of ZnO nanorod and nanoneedle arrays grown in aqueous solution using a variety of seed layers. Increase in the growth solution pH from 6.8 to 13.2 resulted in a near doubling of the growth rate in the [0001] direction possibly due to attractive interaction between the zinc species and the growth surface at high pH, leading to nanorod arrays with reduced faceting and higher aspect ratios. Increases in 1,3-diaminopropane concentration initially enhanced and subsequently inhibited growth of tapered ZnO nanoneedles on seed layers consisting of ZnO nanoparticles, oriented ZnO films, or columnar facets of ZnO microrods. The final nanoneedle dimensions, packing density, and alignment were strongly affected by 1,3-diaminopropane concentration and seed layer type, which can be explained in terms of the relative strength of zinc chelation by 1,3-diaminopropane, the areal density of seeds, and other factors. The precise tuning of ZnO crystalline morphology via the control of seeding and growth conditions may be beneficial to many potential applications that require these aligned crystalline nanostructures. © 2008 American Chemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.
Materials Science and Technology Conference and Exhibition, MS and T'07 - "Exploring Structure, Processing, and Applications Across Multiple Materials Systems"
Pre-oxidized and glass-to-metal (GtM) sealed austenitic stainless steels were found to display a ferritic layer near the metal/oxide interface, as determined by electron backscatter diffraction (EBSD). Electron probe microanalysis (EPMA) showed that this layer was depleted in alloying elements due to the oxidation and sealing process. Characterization of the morphology suggested that it formed through the martensite transformation mechanism. Moreover, this observed layer was correlated to the composition gradient through published empirical relationships for martensite-start (Ms) temperatures. Due to Cr, Mn, and Si depletion during pre-oxidation and glass sealing, Ms temperatures near room temperature are possible in this surface region. Further support for a martensitic transformation was provided by thermochemical modeling. Possible detrimental ramifications of bulk composition, surface depletion, and phase transformations on GtM sealing are discussed. Copyright © 2007 MS&T'07®.
Proceedings of the 3rd International Brazing and Soldering Conference
An oxidation treatment, often termed "pre-oxidation", is performed on austenitic stainless steel prior to glass/metal joining to produce hermetic seals. The resulting thin oxide acts as a transitional layer and a source of Cr and other elements which diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO 2 atmosphere to avoid iron oxide formation and the final oxide is composed of Cr 2O 3, MnCr 2O 4 spinel, and SiO 2. Significant heat-to-heat variations in the oxidation behavior of 304L stainless steel have been observed, which result in inconsistent glass/metal seal behavior. The objectives of this work were to characterize the oxidation kinetics, the oxide morphology and composition, and the stainless steel attributes that lead to robust glass/metal seals. The oxidation kinetics were determined by thermogravimetric (TG) analysis and the oxide layers were characterized using metallography, SEM, focused ion beam (FIB) analysis, and image analysis. The results show that poor sealing behavior is associated with slower oxidation kinetics and a more continuous layer of SiO 2 at the metal/oxide interface. In addition, the effects of 304L heat composition on oxidation behavior will be discussed. Copyright © 2006 ASM International®.
Ceramic Engineering and Science Proceedings
An oxidation treatment, often termed "pre-oxidation", is performed on austenitic stainless steel prior to joining to alkali barium silicate glass to produce hermetic seals. The resulting thin oxide acts as a transitional layer and a source of Cr and other elements which diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO2 atmosphere to avoid iron oxide formation and the final oxide is composed of Cr2O3, MnCr2O4 spinel, and SiO2. Significant heat-to-heat variations in the oxidation behavior of 304L stainless steel have been observed, which result in inconsistent glass-to-metal (GTM) seal behavior. The objectives of this work were to characterize the stainless steel pre-oxidized layer and the glass/oxide/304L interface region after glass sealing. The 304L oxidation kinetics were determined by thermogravimetric (TG) analysis and the glass/metal seals characteristics were studied using sessile drop tests, in which wetting angles were measured and glass adhesion was analyzed. The pre-oxidized layers and glass/metal interface regions were characterized using metallography, focused ion beam (FIB) sectioning, scanning and transmission electron microscopy, and electron probe microanalysis (EPMA). The results show that poor glass sealing behavior is associated with a more continuous layer of SiO 2 at the metal/oxide interface.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.