Network Systems Analysis: CSYS 300
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chronic infection with Hepatitis C virus (HCV) results in cirrhosis, liver cancer and death. As the nations largest provider of care for HCV, US Veterans Health Administration (VHA) invests extensive resources in the diagnosis and treatment of the disease. This report documents modeling and analysis of HCV treatment dynamics performed for the VHA aimed at improving service delivery efficiency. System dynamics modeling of disease treatment demonstrated the benefits of early detection and the role of comorbidities in disease progress and patient mortality. Preliminary modeling showed that adherence to rigorous treatment protocols is a primary determinant of treatment success. In depth meta-analysis revealed correlations of adherence and various psycho-social factors. This initial meta-analysis indicates areas where substantial improvement in patient outcomes can potentially result from VA programs which incorporate these factors into their design.
Infectious diseases can spread rapidly through healthcare facilities, resulting in widespread illness among vulnerable patients. Computational models of disease spread are useful for evaluating mitigation strategies under different scenarios. This report describes two infectious disease models built for the US Department of Veteran Affairs (VA) motivated by a Varicella outbreak in a VA facility. The first model simulates disease spread within a notional contact network representing staff and patients. Several interventions, along with initial infection counts and intervention delay, were evaluated for effectiveness at preventing disease spread. The second model adds staff categories, location, scheduling, and variable contact rates to improve resolution. This model achieved more accurate infection counts and enabled a more rigorous evaluation of comparative effectiveness of interventions.
Abstract not provided.
Physica A
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS