Publications

4 Results
Skip to search filters

Development and Use of an Ultra-High Resolution Electron Scattering Apparatus

Frank, Jonathan H.; Smoll, Eric J.; Jana, Irina J.; Huang, Erxiong H.; Chandler, D.W.

In this LDRD project, we developed a versatile capability for high-resolution measurements of electron scattering processes in gas-phase molecules, such as ionization, dissociation, and electron attachment/detachment. This apparatus is designed to advance fundamental understanding of these processes and to inform predictions of plasmas associated with applications such as plasma-assisted combustion, neutron generation, re-entry vehicles, and arcing that are critical to national security. We use innovative coupling of electron-generation and electron-imaging techniques that leverages Sandia’s expertise in ion/electron imaging methods. Velocity map imaging provides a measure of the kinetic energies of electrons or ion products from electron scattering in an atomic or molecular beam. We designed, constructed, and tested the apparatus. Tests include dissociative electron attachment to O2 and SO2, as well as a new method for studying laser-initiated plasmas. This capability sets the stage for new studies in dynamics of electron scattering processes, including scattering from excited-state atoms and molecules.

More Details

Development of New Experimental Methods for Correlated Operando Surface/Gas Characterization

Kliewer, Christopher J.; El Gabaly Marquez, Farid E.; Smoll, Eric J.; Chandler, D.W.; Bartelt, Norman C.; Cauduro, Andre C.

The predictive understanding of catalytic surface reactions requires accurate microkinetic models, and while decades of work has been devoted to the elucidation of the reaction steps in these models, many open questions remain. One key issue is a lack of approaches enabling the local spatially resolved assessment of catalytic activity over a surface. In this report, we detail efforts to develop a new diagnostic approach to solve this problem. The approach is based upon laser resonance enhanced multiphoton ionization of reaction products emitted into the gas phase followed by spatially resolved imaging of the resultant ions or electrons. Ion imaging is pursued with a velocity-selected spatially resolved ion imaging microscope, while electron imaging was attempted in a low energy electron microscope. Successful demonstration of the ion imaging microscope coupled with the development of transport simulations shows promise for a revolutionary new tool to assess local catalytic activity

More Details
4 Results
4 Results