Publications

6 Results

Search results

Jump to search filters

Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty

European Journal of Operational Research

Valicka, Christopher G.; Garcia, Deanna G.; Staid, Andrea S.; Watson, Jean-Paul W.; Hackebeil, Gabriel A.; Rathinam, Sivakumar; Ntaimo, Lewis

We introduce the problem of scheduling observations on a constellation of remote sensors, to maximize the aggregate quality of the collections obtained. While automated tools exist to schedule remote sensors, they are often based on heuristic scheduling techniques, which typically fail to provide bounds on the quality of the resultant schedules. To address this issue, we first introduce a novel deterministic mixed-integer programming (MIP) model for scheduling a constellation of one to n satellites, which relies on extensive pre-computations associated with orbital propagators and sensor collection simulators to mitigate model size and complexity. Our MIP model captures realistic and complex constellation-target geometries, with solutions providing optimality guarantees. We then extend our base deterministic MIP model to obtain two-stage and three-stage stochastic MIP models that proactively schedule to maximize expected collection quality across a set of scenarios representing cloud cover uncertainty. Our experimental conclusions on instances of one and two satellites demonstrate that our stochastic MIP models yield significantly improved collection quality relative to our base deterministic MIP model. We further demonstrate that commercial off-the-shelf MIP solvers can produce provably optimal or near-optimal schedules from these models in time frames suitable for sensor operations.

More Details

Dynamic Multi-Sensor Multi-Mission Optimal Planning Tool

Valicka, Christopher G.; Rowe, Stephen R.; Zou, Simon Z.; Mitchell, Scott A.; Irelan, William R.; Pollard, Eric L.; Garcia, Deanna G.; Hackebeil, Gabriel A.; Staid, Andrea S.; Laros, James H.; Watson, Jean-Paul W.; Hart, William E.; Rathinam, Sivakumar; Ntaimo, Lewis

Remote sensing systems have firmly established a role in providing immense value to commercial industry, scientific exploration, and national security. Continued maturation of sensing technology has reduced the cost of deploying highly-capable sensors while at the same time increased reliance on the information these sensors can provide. The demand for time on these sensors is unlikely to diminish. Coordination of next-generation sensor systems, larger constellations of satellites, unmanned aerial vehicles, ground telescopes, etc. is prohibitively complex for existing heuristics-based scheduling techniques. The project was a two-year collaboration spanning multiple Sandia centers and included a partnership with Texas A&M University. We have developed algorithms and software for collection scheduling, remote sensor field-of-view pointing models, and bandwidth-constrained prioritization of sensor data. Our approach followed best practices from the operations research and computational geometry communities. These models provide several advantages over state of the art techniques. In particular, our approach is more flexible compared to heuristics that tightly couple models and solution techniques. First, our mixed-integer linear models afford a rigorous analysis so that sensor planners can quantitatively describe a schedule relative to the best possible. Optimal or near-optimal schedules can be produced with commercial solvers in operational run-times. These models can be modified and extended to incorporate different scheduling and resource constraints and objective function definitions. Further, we have extended these models to proactively schedule sensors under weather and ad hoc collection uncertainty. This approach stands in contrast to existing deterministic schedulers which assume a single future weather or ad hoc collection scenario. The field-of-view pointing algorithm produces a mosaic with the fewest number of images required to fully cover a region of interest. The bandwidth-constrained algorithms find the highest priority information that can be transmitted. All of these are based on mixed-integer linear programs so that, in the future, collection scheduling, field-of-view, and bandwidth prioritization can be combined into a single problem. Experiments conducted using the developed models, commercial solvers, and benchmark datasets have demonstrated that proactively scheduling against uncertainty regularly and significantly outperforms deterministic schedulers.

More Details
6 Results
6 Results