Publications

2 Results

Search results

Jump to search filters

Adverse Event Prediction Using Graph-Augmented Temporal Analysis (Final Report)

Brost, Randolph B.; Carrier, Erin E.; Carroll, Michelle C.; Groth, Katrina M.; Kegelmeyer, William P.; Leung, Vitus J.; Link, Hamilton E.; Patterson, Andrew J.; Phillips, Cynthia A.; Richter, Samuel; Robinson, David G.; Staid, Andrea S.; Woodbridge, Diane M.K.

This report summarizes the work performed under the Sandia LDRD project "Adverse Event Prediction Using Graph-Augmented Temporal Analysis." The goal of the project was to develop a method for analyzing multiple time-series data streams to identify precursors providing advance warning of the potential occurrence of events of interest. The proposed approach combined temporal analysis of each data stream with reasoning about relationships between data streams using a geospatial-temporal semantic graph. This class of problems is relevant to several important topics of national interest. In the course of this work we developed new temporal analysis techniques, including temporal analysis using Markov Chain Monte Carlo techniques, temporal shift algorithms to refine forecasts, and a version of Ripley's K-function extended to support temporal precursor identification. This report summarizes the project's major accomplishments, and gathers the abstracts and references for the publication sub-missions and reports that were prepared as part of this work. We then describe work in progress that is not yet ready for publication.

More Details

Geospatial-Temporal Semantic Graphs for Automated Wide-Area Search

Brost, Randolph B.; Carroll, Michelle C.; Dennison, Debbie; Goforth, John; McLendon, William C.; Morrow, James D.; O'Neil-Dunne, Jarlath; Parekh, Ojas D.; Patterson, Andrew J.; Laros, James H.; Strip, David R.; Woodbridge, Diane M.K.

We address the problem of wide-area search of overhead imagery. Given a time sequence of overhead images, we construct a geospatial-temporal semantic graph, which expresses the complex continuous information in the overhead images in a discrete searchable form, including explicit modeling of changes seen from one image to the next. We can then express desired search goals as a template graph, and search for matches using simple and efficient graph search algorithms. This produces a set of potential matches which provide cues for where to examine the imagery in detail, applying human expertise to determine which matches are correct. We include a match quality metric that scores the matches according to how well they match the stated search goal. This enables matches to be presented in sorted order with the best matches first, similar to the results returned by a web search engine. We present an evaluation of the method applied to several examples and data sets, and show that it can be used successfully for some problems. We also remark on several limitations of the method and note additional work needed to improve its scope and robustness. Approved for public release; further dissemination unlimited.

More Details
2 Results
2 Results