Publications Details

Publications / Journal Article

Investigating the Effects of Lithium Deposition on the Abuse Response of Lithium-Ion Batteries

Deichmann, Eric J.; Torres-Castro, Loraine T.; Lamb, Joshua H.; Karulkar, Mohan P.; Ivanov, Sergei; Grosso, Christopher G.; Gray, Lucas S.; Langendorf, Jill L.; Garzon, Fernando

Li deposition at the graphitic anode is widely reported in literature as one of the leading causes of capacity fade in lithium-ion batteries (LIBs). Previous literature has linked Li deposition resulting from low-temperature ageing to diminished safety characteristics, however no current research has probed the effects of Li deposition on the abuse response of well-characterized cells. Using overtemperature testing, a relationship between increased concentrations of Li deposition and exacerbated abuse response in 1 Ah pouch cells has been established. A novel Li deposition technique is also investigated, where cells with n:p < 1 (anode-limiting) have been cycled at a high rate to exploit Li+ diffusion limitations at the anode. Scanning Electron Microscopy of harvested anodes indicates substantial Li deposition in low n:p cells after 20 cycles, with intricate networks of Li(s) deposits which hinder Li+ intercalation/deintercalation. Peak broadening and decreased amplitude of differential capacity plots further validates a loss of lithium inventory to Li+ dissolution, and Powder X-ray Diffraction indicates Li+ intercalation with staging in anode interstitial sites as the extent of Li deposition increases. A cradle-to-grave approach is leveraged on cell fabrication and testing to eliminate uncertainty involving the effects of cell additives on Li deposition and other degradation mechanisms.