Publications Details
Increasing DER Hosting Capacity in Meshed Low-Voltage Grids with Modified Network Protector Relay Settings
Azzolini, Joseph A.; Reno, Matthew J.; Ropp, Michael E.; Cheng, Zheyuan; Udren, Eric; Holbach, Juergen
Due to their increased levels of reliability, meshed low-voltage (LV) grid and spot networks are common topologies for supplying power to dense urban areas and critical customers. Protection schemes for LV networks often use highly sensitive reverse current trip settings to detect faults in the medium-voltage system. As a result, interconnecting even low levels of distributed energy resources (DERs) can impact the reliability of the protection system and cause nuisance tripping. This work analyzes the possibility of modifying the reverse current relay trip settings to increase the DER hosting capacity of LV networks without impacting fault detection performance. The results suggest that adjusting relay settings can significantly increase DER hosting capacity on LV networks without adverse effects, and that existing guidance on connecting DERs to secondary networks, such as that contained in IEEE Std 1547-2018, could potentially be modified to allow higher DER deployment levels.