Publications Details

Publications / Conference Paper

HYDROGEN PRESSURE CYLCING OF SUBSCALE PIPES TO SIMULATE FULL-SCALE TESTING OF TRANSMISSION PIPELINES

San Marchi, Chris; Ronevich, Joseph; Schroeder, Benjamin B.; Davis, Brendan C.

Full-scale testing of pipes is costly and requires significant infrastructure investments. Subscale testing offers the potential to substantially reduce experimental costs and provides testing flexibility when transferrable test conditions and specimens can be established. To this end, a subscale pipe testing platform was developed to pressure cycle 60 mm diameter pipes (Nominal Pipe Size 2) to failure with gaseous hydrogen. Engineered defects were machined into the inner surface or outer surface to represent pre-existing flaws. The pipes were pressure cycled to failure with gaseous hydrogen at pressures to match operating stresses in large diameter pipes (e.g., stresses comparable to similar fractions of the specified minimum yield stress in transmission pipelines). Additionally, the pipe specimens were instrumented to identify crack initiation, such that crack growth could be compared to fracture mechanics predictions. Predictions leverage an extensive body of materials testing in gaseous hydrogen (e.g., ASME B31.12 Code Case 220) and the recently developed probabilistic fracture mechanics framework for hydrogen (Hydrogen Extremely Low Probability of Rupture, HELPR). In this work, we evaluate the failure response of these subscale pipe specimens and assess the conservatism of fracture mechanics-based design strategies (e.g., API 579/ASME FFS). This paper describes the subscale hydrogen testing capability, compares experimental outcomes to predictions from the probabilistic hydrogen fracture framework (HELPR), and discusses the complement to full-scale testing.