Publications Details
Fracture Toughness of Microstructural Gradients
Castelluccio, Gustavo M.; Lim, Hojun L.; Emery, John M.; Battaile, Corbett C.
Traditional singularity-based fracture mechanics theories rely on their ability to infer the crack tip driving force (local field) by surveying macroscopic physical magnitudes far from the crack tip (far field). This key capability allows engineers to employ nominal forces or displacements to estimate the potential for stable or unstable crack growth. In the case of heterogeneous or anisotropic materials, traditional fracture approaches are not fully theoretically sound and applications rely on extrapolating methodologies with ad-hoc corrections. This Express Laboratory Directed Research and Development (ELDRD) program employed mesoscale-sensitive finite element simulations to assess the impact of grain size and texture on the crack tip behavior. A dislocation-based crystal plasticity model conveys grain size effects by computing the constraint on dislocation cell structures. We assessed the effects of microstructural variability on multiple displacement-based measurements of the fracture driving forces for crack opening (Mode I) and sliding (Mode II). We also consider multiple microstructural realizations of single phase metals undergoing ductile failure. The results show that grain size and texture affect the applied fracture driving force and can induce a significant Mode II deformation under force and displacement control, which is completely neglected in homogeneous models. A large variability in driving forces upon identical far field applied conditions is attributed to a buffering effects of the microstructure. Furthermore, crack mouth opening displacement is almost insensitive to microstructure, which suggests that experimental measurements using such a magnitude (e.g., plastic hinge model) may underestimate local crack tip driving force variability.