Publications Details
Downhole Smart Collar Technology for Wireless Real-Time Fluid Monitoring
Wright, Andrew A.; Cashion, Avery T.; Cochrane, Alfred; Raymond, David W.; Laros, James H.; Ahmadian, Mohsen; Scherer, Axel; Mecham, Jeff
Carbon sequestration is a growing field that requires subsurface monitoring for potential leakage of the sequestered fluids through the casing annulus. Sandia National Laboratories (SNL) is developing a smart collar system for downhole fluid monitoring during carbon sequestration. This technology is part of a collaboration between SNL, University of Texas at Austin (UT Austin) (project lead), California Institute of Technology (Caltech), and Research Triangle Institute (RTI) to obtain real-time monitoring of the movement of fluids in the subsurface through direct formation measurements. Caltech and RTI are developing millimeter-scale radio frequency identification (RFID) sensors that can sense carbon dioxide, pH, and methane. These sensors will be impervious to cement, and as such, can be mixed with cement and poured into the casing annulus. The sensors are powered and communicate via standard RFID protocol at 902-928 MHz. SNL is developing a smart collar system that wirelessly gathers RFID sensor data from the sensors embedded in the cement annulus and relays that data to the surface via a wired pipe that utilizes inductive coupling at the collar to transfer data through each segment of pipe. This system cannot transfer a direct current signal to power the smart collar, and therefore, both power and communications will be implemented using alternating current and electromagnetic signals at different frequencies. The complete system will be evaluated at UT Austin's Devine Test Site, which is a highly characterized and hydraulically fractured site. This is the second year of the three-year effort, and a review of SNL's progress on the design and implementation of the smart collar system is provided.