Publications Details
Advanced CMOS Reliability Update: Sub 20nm FinFET Assessment
Grzybowski, Thomas A.; Walraven, J.A.; Laros, James H.; Kaplar, Robert K.; Haase, Gad S.
Advances in FinFET design and fabrication enable manufacturing of denser, more compact integrated circuits (ICs) with substantially reduced leakage while shortening the channel-lengths. The same stress-induced leakage and breakdown degradation mechanisms that affect planar transistors also impact FinFET devices. Reliability concerns such as Bias Temperature Instability (BTI), Time Dependent Dielectric Breakdown (TDDB), and Hot Carrier Injection (HCI) become very important with changes to transistor geometry and fin sidewall crystal orientation. Recent testing has shown that FinFETs respond differently to radiation (radiation effects such as total ionizing dose) when compared to planar transistors. These reliability and radiation effects issues become very important when changing transistor geometry and scaling FinFETs towards smaller feature sizes (22-nm, 16-nm, 14- nm, 10-nm, and smaller critical dimensions). The comparable 2019 state of the art transistor densities in current high-volume manufacturing silicon-based foundries is 7-nm (ISMC, Samsung) and 10-nm (Intel) [www.anandtech.com,fuse.wikichip.org]. Released products include supporting components for the cellphone and commercial microprocessor markets respectively. Extensive development in the foundry industry is driving to a 5-nm technology node in late 2020.