Atomic Precision Advanced Manufacturing and Lessons for Area-Selective Deposition
Abstract not provided.
Abstract not provided.
The credibility of an engineering model is of critical importance in large-scale projects. How concerned should an engineer be when reusing someone else's model when they may not know the author or be familiar with the tools that were used to create it? In this report, the authors advance engineers' capabilities for assessing models through examination of the underlying semantic structure of a model--the ontology. This ontology defines the objects in a model, types of objects, and relationships between them. In this study, two advances in ontology simplification and visualization are discussed and are demonstrated on two systems engineering models. These advances are critical steps toward enabling engineering models to interoperate, as well as assessing models for credibility. For example, results of this research show an 80% reduction in file size and representation size, dramatically improving the throughput of graph algorithms applied to the analysis of these models. Finally, four future problems are outlined in ontology research toward establishing credible models--ontology discovery, ontology matching, ontology alignment, and model assessment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Entropy
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
TEMPI provides a transparent non-contiguous data-handling layer compatible with various MPIs. MPI Datatypes are a powerful abstraction for allowing an MPI implementation to operate on non-contiguous data. CUDA-aware MPI implementations must also manage transfer of such data between the host system and GPU. The non-unique and recursive nature of MPI datatypes mean that providing fast GPU handling is a challenge. The same noncontiguous pattern may be described in a variety of ways, all of which should be treated equivalently by an implementation. This work introduces a novel technique to do this for strided datatypes. Methods for transferring non-contiguous data between the CPU and GPU depends on the properties of the data layout. This work shows that a simple performance model can accurately select the fastest method. Unfortunately, the combination of MPI software and system hardware available may not provide sufficient performance. The contributions of this work are deployed on OLCF Summit through an interposer library which does not require privileged access to the system to use
Abstract not provided.
Abstract not provided.
Abstract not provided.
Entropy
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.