Publications

Results 6751–6800 of 9,998

Search results

Jump to search filters

Penetration of rod projectiles in semi-infinite targets : a validation test for Eulerian X-FEM in ALEGRA

Niederhaus, John H.J.; Park, Byoung

The finite-element shock hydrodynamics code ALEGRA has recently been upgraded to include an X-FEM implementation in 2D for simulating impact, sliding, and release between materials in the Eulerian frame. For validation testing purposes, the problem of long-rod penetration in semi-infinite targets is considered in this report, at velocities of 500 to 3000 m/s. We describe testing simulations done using ALEGRA with and without the X-FEM capability, in order to verify its adequacy by showing X-FEM recovers the good results found with the standard ALEGRA formulation. The X-FEM results for depth of penetration differ from previously measured experimental data by less than 2%, and from the standard formulation results by less than 1%. They converge monotonically under mesh refinement at first order. Sensitivities to domain size and rear boundary condition are investigated and shown to be small. Aside from some simulation stability issues, X-FEM is found to produce good results for this classical impact and penetration problem.

More Details

Use of limited data to construct Bayesian networks for probabilistic risk assessment

Groth, Katrina M.; Swiler, Laura P.

Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.

More Details

Simple intrinsic defects in InAs :

Schultz, Peter A.

This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.

More Details

Development and deployment of constitutive softening routines in Eulerian hydrocodes

Dewers, Thomas; Swan, Matthew S.

The state of the art in failure modeling enables assessment of crack nucleation, propagation, and progression to fragmentation due to high velocity impact. Vulnerability assessments suggest a need to track material behavior through failure, to the point of fragmentation and beyond. This eld of research is particularly challenging for structures made of porous quasi-brittle materials, such as ceramics used in modern armor systems, due to the complex material response when loading exceeds the quasi-brittle material's elastic limit. Further complications arise when incorporating the quasi-brittle material response in multi-material Eulerian hydrocode simulations. In this report, recent e orts in coupling a ceramic materials response in the post-failure regime with an Eulerian hydro code are described. Material behavior is modeled by the Kayenta material model [2] and Alegra as the host nite element code [14]. Kayenta, a three invariant phenomenological plasticity model originally developed for modeling the stress response of geologic materials, has in recent years been used with some success in the modeling of ceramic and other quasi-brittle materials to high velocity impact. Due to the granular nature of ceramic materials, Kayenta allows for signi cant pressures to develop due to dilatant plastic ow, even in shear dominated loading where traditional equations of state predict little or no pressure response. When a material's ability to carry further load is compromised, Kayenta allows the material's strength and sti ness to progressively degrade through the evolution of damage to the point of material failure. As material dilatation and damage progress, accommodations are made within Alegra to treat in a consistent manner the evolving state.

More Details

A comparison of adjoint and data-centric verification techniques

Cyr, Eric C.; Shadid, John N.; Smith, Thomas M.; Pawlowski, Roger

This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3

More Details
Results 6751–6800 of 9,998
Results 6751–6800 of 9,998