We begin by presenting an overview of the general philosophy that is guiding the novel DARMA developments, followed by a brief reminder about the background of this project. We finally present the FY19 design requirements. As the Exascale era arises, DARMA is uniquely positioned at the forefront of asychronous many-task (AMT) research and development (R&D) to explore emerging programming model paradigms for next-generation HPC applications at Sandia, across NNSA labs, and beyond. The DARMA project explores how to fundamentally shift the expression(PM) and execution(EM)of massively concurrent HPC scientific algorithms to be more asynchronous, resilient to executional aberrations in heterogeneous/unpredictable environments, and data-dependency conscious—thereby enabling an intelligent, dynamic, and self-aware runtime to guide execution.
The purpose of this report is to document a basic installation of the Anasazi eigensolver package and provide a brief discussion on the numerical solution of some graph eigenvalue problems.