Publications

Results 99076–99100 of 99,299

Search results

Jump to search filters

Impact testing and analysis for structural code benchmarking

Glass, R.E.

Sandia National Laboratories, in cooperation with industry and other national laboratories, has been benchmarking computer codes (''Structural Code Benchmarking for the Analysis of Impact Response of Nuclear Material Shipping Cask,'' R.E. Glass, Sandia National Laboratories, 1985; ''Sample Problem Manual for Benchmarking of Cask Analysis Codes,'' R.E. Glass, Sandia National Laboratories, 1988; ''Standard Thermal Problem Set for the Evaluation of Heat Transfer Codes Used in the Assessment of Transportation Packages, R.E. Glass, et al., Sandia National Laboratories, 1988) used to predict the structural, thermal, criticality, and shielding behavior of radioactive materials packages. The first step in the benchmarking of the codes was to develop standard problem sets and to compare the results from several codes and users. This step for structural analysis codes has been completed as described in ''Structural Code Benchmarking for the Analysis of Impact Response of Nuclear Material Shipping Casks,'' R.E. Glass, Sandia National Laboratories, 1985. The problem set is shown in Fig. 1. This problem set exercised the ability of the codes to predict the response to end (axisymmetric) and side (plane strain) impacts with both elastic and elastic/plastic materials. The results from these problems showed that there is good agreement in predicting elastic response. Significant differences occurred in predicting strains for the elastic/plastic models. An example of the variation in predicting plastic behavior is given, which shows the hoop strain as a function of time at the impacting end of Model B. These differences in predicting plastic strains demonstrated a need for benchmark data for a cask-like problem. 6 refs., 5 figs.

More Details

Direct phase estimation from phase differences using fast elliptic PDE (partial differential equation) solvers

Ghiglia, D.C.

Obtaining robust phase estimates from phase differences is a problem common to several areas of importance to the optics and signal processing community. Specific areas of application include speckle imaging and interferometry, adaptive optics, compensated imaging, and coherent imaging such as synthetic-aperture radar. The purpose of this paper is to relate the equations describing the phase estimation problem to the general form of elliptic partial differential equations, and illustrate results of reconstructions on large M by N grids using existing, published, and readily available Fortran subroutines. 15 refs., 2 figs.

More Details

Vacuum arc remelting of Alloy 718

Zanner, F.J.; Williams, R.L.; Harrison, R.P.; Flanders, H.D.; Thompson, R.D.; Szeto, W.C.

Vacuum arc remelting (VAR) is the principal secondary melting process used to produce ingots for almost all wrought Alloy 718 applications. We will attempt, with this paper, to summarize our previous work along with other unpublished work as it applies to VAR of Alloy 718. Successful application for a particular alloy/ingot diameter combination is believed to be dependent on achieving quasisteady thermal/solutal conditions at the solidification interfaces. Local thermal environment is strongly influenced by fluid flows which in turn are driven by global temperature gradients (convection) and magnetohydrodynamic (MHD) forces created by the arc's current distribution. Quasisteady conditions are enhanced when the metal vapor arc is stabilized in the diffuse mode where it provides optimal melting efficiency, macrouniform heating, and axisymmetrical fluid flows in the molten pool atop the ingot. Furnace conditions of low ambient gas pressures (<0.01 torr) and short electrode gaps (<10 mm) stabilize the diffuse mode. A transition from convective to magnetically dominant fluid flow occurs in the pool atop the ingot between 6.6 and 7.6 kA for production size ingots. Constricted arcs are stabilized at elevated ambient gas pressures and electrode gaps. Under these arc conditions fluid flows become unsymmetrical with respect to the ingot axis, ''shelf'' forms on portions of the ingot periphery, and melting efficiency is decreased. 19 refs., 13 figs.

More Details

Investigation of fuel production using metalloporphyrin-based complexes as catalysts and electron-transfer intermediates: Annual report, April 1987--December 1988

Shelnutt, John A.

Metalloporphyrins have appropriate properties for photosensitizing and catalysts solar energy storage reactions. Fundamental spectroscopic studies of metalloporphyrins and related enzymes that carry out C/sub 1/ chemistry can identify the factors controlling reactivity of the metal complexes. Research has concentrated on mimicking biological methanogenesis through investigation of the enzyme methylreductase, which carries out the final step in the reduction of Co/sub 2/ to methane. Transient and difference Raman spectroscopies were used to investigate the structural features of methylreductase, its nickel-hydrocorphin Cofactor F/sub 430/, and hydrocorphin and porphrin analogs of the active nickel complex. in particular, axial ligation at the nickel site was evaluated under a variety of conditions with the goal of elucidating the mechanism of methane synthesis. Studies of the tin-and antimony-porphyrin photoredox cycles were also carried out as possible solar-driven sources of reductant for biomimetic methane generation. 1 ref., 1 fig.

More Details

The development of a mobile instrumentation data acquisition system for use in cask testing

Uncapher, W.L.; Dickinson, J.R.; Althaus, B.L.; Holten, J.R.

Packagings for transporting radioactive materials are required to survive exposure to environments. Package designers investigate design and analysis problems through structural and thermal testing of various components or models, using instrumentation to measure physical responses. The acquisition of high quality data from instrumentation is an essential part of the testing activity. To provide this quality of data, we are developing a mobile instrumentation data acquisition system dedicated for use in cask testing. This system is designed to acquire and analyze structural and thermal test data, and to provide leakage measurement capabilities. The mobile instrumentation system is housed in a 13.4m (44-ft) trailer transporter, which is self-contained with air conditioning, heating, and halon fire protection systems. External power from a commercial or motor generator source is line conditioned prior to distribution to the data acquisition equipment inside the trailer, and lightning protection is provided at the point where the measurement devices interface to the data acquisition equipment. This system is capable of performing data analyses and display of the acquired information within thirty minutes after an experiment.

More Details

Standard thermal problem set

Glass, R.E.; Burgess, M.; Livesey, E.; Geoffrey, J.; Bourdon, S.; Mennerdahl, D.; Cherubini, A.; Giambuzzi, S.; Nagel, P.

Beginning in April 1985, a working group on heat transfer met under the auspices of the Organization for Economic Cooperation and Development's Committee on Reactor Safety to define a standard problem set which could be used to benchmark codes used to predict cask thermal response. The problem definitions and solutions which resulted from these meetings as described in ''Standard Thermal Problem Set for the Evaluation of Heat Transfer Codes Used in the Assessment of Transportation Packages,'' R.E. Glass, et al., Sandia National Laboratories, 1988 are summarized in this paper. The problems that were defined address each of the major heat transfer mechanisms (conduction, convection, and radiation) that occur in a cask both during normal transport and as a result of the all- engulfing fire scenario. The problems were kept geometrically simple to minimize the resources required to obtain a solution while still addressing actual phenomena. This has resulted in a set of one- and two-dimensional problems. The solutions to this problem set include closed form analytical solutions, experimental data, and consensus of numerical solutions. For each problem the range of numerical solutions are presented. 1 ref., 4 figs., 2 tabs.

More Details

Local isotropic/global orthotropic finite element technique for modeling the crush of wood in impact limiters

Yoshimura, Richard H.

Wood is often used as the energy absorbing material in impact limiters, because it begins to crush at low strains, then maintains a near constant crush stress up to nearly 60 percent volume reduction, and there ''locks up.'' Hill has performed tests that show how wood is one of the best absorbers of energy per pound. However, wood's orthotropic behavior for large crush is difficult to model. In the past, analysts have used isotropic foam-like material models for modeling wood. A new finite element technique is presented in this paper that gives a better model of wood crush than the model currently in use. The orthotropic technique is based on locally isotropic, but globally orthotropic (LIGO) assumptions in which alternating layers of hard and soft crushable material are used. Each layer is isotropic; however, by alternating hard and soft thin layer, the resulting global behavior is orthotropic. In the remainder of this paper, the new technique for modeling orthotropic wood crush will be presented. The model is used to predict the crush behavior for different grain orientations of a 5 /times/ 5 inch sample of balsa wood. As an example problem, an impact limiter containing balsa wood as the crushable material is analyzed using both an isotropic model and the alternating layer model. 9 refs., 7 figs.

More Details

Issues in shock-induced solid state chemistry

Graham, R.A.

There has been considerable work over the past few years to study shock-induced solid state chemistry. In the present report, issues raised in the area are reviewed and critical concepts are discussed. The distinctive nature of solid state chemistry compared to liquid and gas phase chemistry is emphasized and material probes suitable for the study of solids are described. In order for solids to react in times less than one microsecond, unusual processes must be initiated in shock compression. Chief among the unique shock processes is the mixing of reactants by the large kinetic energy of shock-compression pulses. Mixing and fluid-like flow can lead to sufficiently intimate contact between reactants to permit complete chemical reaction in the solid state on the time scale of the experiment. Shock-induced solid state chemistry may be described as an unusually intense mechanochemical process. 24 refs., 2 figs.

More Details

Reliability of the Solar One plant during the power production phase

Kolb, Gregory J.

Solar One is the world's largest central receiver power plant. During the last 4 years the plant availability was 80%, 83%, and 96%, respectively, during hours of sunshine. This reliability is considered to be excellent considering the plant is a first-of-a-kind facility and because it has been subjected to daily cyclic service. In this paper we present the frequencies and causes of the plant outages that occurred. The ten most important causes comprised 72% of the total outage time. Qualitative insights related to the cause and mitigation of these ten are provided. The information presented in this paper will be useful to studies aimed at improving the reliability of future solar central receiver power plants. It is also useful to members of the utility industry who are considering investing in this technology or are considering cyclic operation of conventional power plants. 4 refs., 3 figs.

More Details

Issues pertinent to sealing of radioactive waste repositories in bedded salt formations

Nowak, E.J.

Several issues have been identified as pertinent to sealing of radioactive waste repositories in bedded salt formations. These issues include: overall seal system functions and strategy for waste isolation; performance requirements for the seal system; need for redundancy; locations of long-term seals in excavations and boreholes; requirements for sealing interbeds and the disturbed rock zone (DRZ) seal stability for the required lifetime; and need for short-term seals in addition to long-term seals. These issues are defined in general terms, and some principles that may be useful in addressing them are presented. Although this presentation derives from experience with bedded salt, it has applicability to domal salt as well.

More Details

White paper: Experimental and computational studies of very high velocity impacts

Trucano, Timothy G.

The following research is proposed: (1) Perform four to six new time-resolved lethality experiments on cadmium at projectile velocities 7 km/s, greater than that of our previous work at 5.2 km/s. The increased velocity will substantially increase the mass percentage of vaporization. Through simulation of these experiments, computer codes can be validated for hypervelocity impact when vaporization occurs. (2) Perform an additional four to six 1-D lethality experiments on zinc. This material undergoes substantial vaporization under the experimental conditions, and would expand our knowledge about the sensitivity of KEW lethality to shock-induced vaporization. (3) Perform two to four ballistic impact experiments with the ballistics gun at Sandia to provide a full validation of computational capabilities used in simulating the 1-D experiments. These experiments would probe phenomenology that is similar to the 1-D experiments, but with multi-dimensional debris propagation. This will extend the confidence in computer modeling to conditions analagous to KEW lethality applications.

More Details

A vortex panel analysis of circular-arc bluff-bodies in unsteady flow

Strickland, James H.

A method which is capable of calculating the unsteady flow field around circular-arc bluff bodies of zero thickness is presented. This method utilizes linear vortex panels to model the body surface and a portion of the wake surfaces. Discrete vortices are used to model the remainder of the wake surfaces. Separation is assumed to occur at the sharp edges of the bodies. Numerical results for circular-arc bodies with included angles of less than 180/degree/ are compared with experimental data and found to be in good agreement. 31 refs., 15 figs.

More Details

Testing of a new recovery parachute system for the F111 aircraft crew escape module: An update

Johnson, David J.

A new recovery parachute system has been designed for the F111 crew escape module (CEM). The system includes a cluster of three 49-ft-dia ringslot-solid parachutes, a Kevlar deployment bag, and an explosively fired drogue gun to deploy the pilot parachute. Tests have been conducted that indicate the parachute system will meet the rate of descent requirement of 25 ft/sec at 5000 ft pressure altitude. To control the drag load developed by the parachutes, a new central reefing/disreefing system has been developed. Since the recovery parachute system is normally deployed crosswind from the CEM, line sail of the suspension lines during early tests was a problem but has been minimized by a dual pilot parachute system. 6 refs., 7 figs.

More Details

Effectiveness of intact capture media

Aubert, James H.

The possibility of capturing cosmic dust at hypervelocity has been demonstrated in the laboratory and in the unintended Solar Max spacecraft. This technology will enable a comet coma sample return mission and be important for the earth orbital cosmic dust collection mission, i.e., the Space Station Cosmic Dust Collection Facility. Since the only controllable factor in an intact capture of cosmic dust is the capturing medium, characterizing the effectiveness and properties of available capture media would be very important in the development of the technique for capturing hypervelocity cosmic dust intact. We have evaluated various capture underdense media for the relative effectiveness for intact capture. 2 refs., 2 figs.

More Details

An analytical study of a vibration test method using extremal control of acceleration and force

Smallwood, David O.

A vibration test method has been proposed where control is accomplished using extremal control of the force and acceleration at the input to a test item. This proposal is examined with several examples. The method does limit the acceleration input at frequencies where the test item responses tend to be unrealistically large. However, the method's application is not straightforward and care must be taken in the application of the method. 9 refs., 16 figs.

More Details

Nd:YAG laser weldability of RS/PM Al-8Fe-2Mo sheet

Lienert, T.

The microstructure, mechanical properties and fracture characteristics of a pulsed Nd:YAG laser weld in a rapid solidification/powder metallurgy (RS/PM) Al-8 wt % Fe-2.3 wt % Mo alloy have been investigated. Results showed the high power density but low total energy input associated with pulsed Nd:YAG laser welding to promote extremely rapid fusion zone (FZ) cooling rates in the vicinity of 10/sup 5//degree/C/s. The weld FZ microstructure consisted primarily of submicron-sized spherical dispersoids in a matrix of fine dendritic-alpha aluminum. A dispersoid-coarsened heat-affected zone (HAZ) was also observed in the boundary between successive, overlapping melt zones. Transverse-weld tensile testing found fracture to occur in the unaffected base metal indicating 100% weld joint efficiency. Longitudinal-weld bend ductility testing revealed fracture initiation and propagation to be associated with the HAZ between successive melt zones at a bend ductility level only marginally below that of the base metal. 12 refs., 7 figs.

More Details

Factoring very large numbers using a massively parallel computer

Holdridge, D.B.

A good many words have been spoken and written (some by the present authors) about factoring very large numbers. Therefore, the thrust of this paper is a discussion of how the quadratic sieve algorithm has been adapted to work on a 1024-processor hypercube at Sandia National Laboratories. A brief description of the hypercube, an NCUBE/ten, its idiosyncrasies and its power, as well as some comparisons of timings between numbers factored on the CRAY and on the hypercube, are included. 6 refs., 1 tab.

More Details

Status of the PBFA-II light ion beam fusion program

Quintenz, Jeffrey P.

PBFA II is the first pulsed power accelerator designed and built specifically to produce light ions for driving targets in Sandia National Laboratories inertial confinement fusion program. Recent progress in ion beam generation and focusing has been excellent. Record ion beam intensities have been obtained. Development of an extensive array of diagnostics and advances in the theory of ion diodes have had a major impact on this progress. A summary of recent progress and the present status of the PBFA-II light ion beam fusion program is given. 40 refs., 4 figs.

More Details

Electrophoretically applied dielectrics for amorphous metal foils used in pulsed power saturable reactors

Sharp, D.J.

Amorphous metal foil-wound inductors have been tested as ferromagnetic saturable inductive elements for pulsed-power (multi-terawatt) switching modules in the inertial confinement fusion program at Sandia National Laboratories. In simulated capacitor testing premature dielectric breakdown of thin polyethylene terephthalate film insulation in the inductor windings occurs at considerably below 2500 V. This appears to be due to inadvertant dielectric damage from micro-spikes on the amorphous foil surface. Electron micrographs and dielectric breakdown data illustrate that electrophoretically-applied dielectric coatings, deposited from organic aqueous colloid dispersions, can be used to provide insulating coatings on the foil which provide a 240% improvement (6000 V) in the breakdown strength of wound amorphous foil inductors. The theory and operation of a dedicated electrophoretic continuous coating system is described. The machine was constructed and successfully applied for dielectric coating of amorphous metal foil. Additional possible applications exist for practical dielectric coating of metallic films or foils used in various commercial wound-type capacitor structures. 7 refs., 9 figs.

More Details

Influence of organic coal structure on liquefaction behavior: An update with emphasis on low-severity conditions

Stephens, H.P.

The influence of coal structure on primary conversions and oil yields in thermolytic extraction with different H-donor and non-H-donor solvents and in dry catalytic hydrogenation has been investigated. Pre-soaking of coal/H-donor solvent slurries at 250/degree/C increased conversions and the level of hydrogen transfer at short contact times (SCT, less than or equal to 10 min), demonstrating studies, prior removal of THF-extractable material (mobile phase) from one bituminous coal actually gave rise to higher conversions to pyridine-solubles for non-donor polynuclear aromatic compounds (PAC), such as naphthalene, phenanthrene and pyrene. These findings highlight the difficulties in relating primary conversions to coal characteristics. In contrast, oil yields have been found to increase broadly with decreasing rank in both H-donor solvent extraction with a process solvent and dry catalytic hydrogenation. However, in SCT tetralin extraction where poor physical contact between coal and solvent exists, neither total conversion nor oil yield correlates with rank. 23 refs., 1 fig., 3 tabs.

More Details

Progress in linear optics, non-linear optics and surface alignment of liquid crystals

Hurd, A.J.

We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition. 50 refs.

More Details

Advances in concentrator cell technology

King, David L.

The dramatic improvement in silicon concentrator cell efficiency recently demonstrated in university laboratories has had a significant influence on concentrator technology development. This paper briefly describes concentrator field experience, economics, current technology paths, and concludes with a detailed summary of concentrator cell performance. 29 refs., 2 figs., 3 tabs.

More Details

Documentation for users: Audience, content, and language

Poore, A.V.

When a technology such as solar energy enters the everyday world, the documentation about it must also become part of the technology transfer. The challenge in creating publications about technical subjects for semi-technical people or for popular use is to be both accurate and interesting. The process of creating this documentation should begin by carefully defining the audience and aiming the publication at it. To a large extent, the audience determines both the content and the language that will be used. 2 refs.

More Details

A multiphase model for compaction-induced combustion of ball propellants

Baer, M.R.

In this work, compaction-induced combustion in packed beds of nitrocellulose-based ball propellants is modeled using a multiphase mixture description. This model is applied to conditions simulating low-velocity impact experiments of Sandusky, et. al. (NSWC). A two- stage combustion model is used whereby compressive reaction begins at the compaction front. Subsequent energy release is delayed following an induction rate law based on time-to-reaction experimental data. Given conditions of sufficient energy release and heat transfer, grain burning is initiated when granular surface temperatures exceed decomposition conditions. Numerical solutions of the one-dimensional multiphase conservation equations are obtained using an adaptive finite element method and calculations are compared to experiments investigating various impact loading conditions on the ball propellants TS3659 and WC140. 11 refs., 12 figs., 1 tab.

More Details
Results 99076–99100 of 99,299
Results 99076–99100 of 99,299