We apply density functional theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew?Burke?Ernzerhof exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an electronvolt. The DFT+U technique, parametrized to B3LYP-predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than that of PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP and 0.1 {angstrom} changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first-row transition metal ion complexes in a condensed-matter setting.
We developed a pyrometer that operates near the high-temperature bandgap of GaN, thus solving the transparency problem once a {approx} 1 {micro}m thick GaN epilayer has been established. The system collects radiation in the near-UV (380-415 nm) and has an effective detection wavelength of {approx}405 nm. By simultaneously measuring reflectance we also correct for emissivity changes when films of differing optical properties (e.g. AlGaN) are deposited on the GaN template. We recently modified the pyrometer hardware and software to enable measurements in a multiwafer Veeco D-125 OMVPE system. A method of synchronizing and indexing the detection system with the wafer platen was developed; so signals only from the desired wafer(s) could be measured, while rejecting thermal emission signals from the platen. Despite losses in optical throughput and duty cycle we are able to maintain adequate performance from 700 to 1100 C.
We present the solution of a 1D radial MHD model of the plasma ablated from multi-MA wire array implosions extending a recently obtained steady state solution [J.P. Chittenden, et al. Phys. Plasmas 11, 1118 (2004)] to a driving current that is exponential in time. We obtain a solution for the flow in almost analytical form by reducing the partial differential equations to a set of ordinary differential equations with a single parameter. We compute the mass weighted density width, and find the regime in which it agrees to a few percent with that of a simpler approximation to the ablated plasma flow, for which the driving current is linear in time, and the flow velocity constant. Assuming that the density width at the end of the ablation period is proportional to width of the plasma sheath at stagnation, we obtain a scaling relationship for peak X-ray power. We compare this relationship to experimental peak X-ray powers for tungsten wire arrays on the Z pulsed power generator of Sandia National Laboratories, and to previously proposed scaling hypotheses. We also use this scaling to project peak X-ray powers on ZR, a higher peak current modification of Z, presently under design.
Summary from only given. The capabilities of the Z accelerator will be significantly enhanced by the Z Refurbishment (ZR) project [McDaniel DH, 2002]. The performance of a single ZR module is currently being characterized in the pre-production engineering evaluation test bed, Z20 [Lehr, JM, 2003]. Z20 is thoroughly diagnosed so that electrical performance of the module can be established. Circuit models of Z20 have been developed and validated in both Screamer [1985] and Bertha [1989] circuit codes. For the purposes of predicting ZR performance, a full ZR circuit model has also been developed in Bertha. The full ZR model (using operating parameters demonstrated on Z20) indicates that the required 26 MA, 100 ns implosion time, output load current pulse will be achieved on ZR. In this paper, the electrical characterization of Z20 and development of the single module circuit models will be discussed in detail. The full ZR model will also be discussed and the results of several system studies conducted to predict ZR performance will be presented.
The stress evolution during electrodeposition of NiMn from a sulfamate-based bath was investigated as a function of Mn concentration and current density. The NiMn stress evolution with film thickness exhibited an initial high transitional stress region followed by a region of steady-state stress with a magnitude that depended on deposition rate, similar to the previously reported stress evolution in electrodeposited Ni [S. J. Hearne and J. A. Floro, J. Appl. Phys. 97, 014901-1 (2005)]. The incorporation of increasing amounts of Mn resulted in a linear increase in the steady-state stress at constant current density. However, no significant changes in the texture or grain size were observed, which indicates that an atomistic process is driving the changes in steady-state stress. Additionally, microstrain measured by ex situ x-ray diffraction increased with increasing Mn content, which was likely the result of localized lattice distortions associated with substitutional incorporation of Mn and/or increased twin density.
The summary of this report is: (1) The Kernal Density Estimator (KDE) model using log data provides the most conservative estimates; (2) The Empirical Tolerance Limit (ETL) model provides the least conservative estimates; (3) The results for the Karhunen-Loeve (K-L) and Normal Tolerance Limit (NTL) models lie in between the extremes; (4) The NTL results ended up being as credible as any of the other methods. This may be related to the fact that the data appeared to fit a lognormal distribution for higher values of {beta}; (5) The discrepancy between these methods appears to widen for higher values of {beta} and {gamma}; (6) The reasons for the extreme difference in the KDE results depending on whether one uses the raw data or the log of the data is not clear at this time; and (7) Which model will best suit our needs is not clear at this time.