The Temperature and Pressure Dependence of the Reactions H%2BO2(%2BM)-%3EHO2(%2BM) and H%2BOH(%2BM)-%3EH2O(%2BM)
Journal of Physical Chemistry A
Abstract not provided.
Journal of Physical Chemistry A
Abstract not provided.
Proceedings of the Combustion Institute
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry A
This work reports measurements of absolute rate coefficients and Rice-Ramsperger-Kassel-Marcus (RRKM) master equation simulations of the C 2H 3 + C 2H 4 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 20 and 133 mbar. Vinyl radicals (H 2C=CH) were generated by laser photolysis of vinyl iodide (C 2H 3I) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. Measurements at 20 mbar are in good agreement with previous determinations at higher temperature. A weighted three-parameter Arrhenius fit to the experimental rate constant at 133 mbar, with the temperature exponent fixed, gives k = (7 ±1) × 10 -14 cm 3 molecule -1 s -1 (T/298 K) 2 exp[-(1430 ± 70) K/T]. RRKM master equation simulations, based on G3 calculations of stationary points on the C 4H 7 potential energy surface, were carried out to predict rate coefficients and product branching fractions. The predicted branching to 1-methylallyl product is relatively small under the conditions of the present experiments but increases as the pressure is lowered. Analysis of end products of 248 nm photolysis of vinyl iodide/ethylene mixtures at total pressures between 27 and 933 mbar provides no direct evidence for participation of 1-methylallyl. © 2007 American Chemical Society.
Abstract not provided.
Journal of Chemical Physics
The implementation of variational transition state theory (VTST) for long-range asymptotic potential forms is considered, with particular emphasis on the energy and total angular momentum resolved (μJ -VTST) implementation. A long-range transition state approximation yields a remarkably simple and universal description of the kinetics of reactions governed by long-range interactions. The resulting (μJ -VTST) implementation is shown to yield capture-rate coefficients that compare favorably with those from trajectory simulations (deviating by less than 10%) for a wide variety of neutral and ionic long-range potential forms. Simple analytic results are derived for many of these cases. A brief comparison with a variety of low-temperature experimental studies illustrates the power of this approach as an analysis tool. The present VTST approach allows for a simple analysis of the applicability conditions for some related theoretical approaches. It also provides an estimate of the temperature or energy at which the "long-range transition state" moves to such short separations that short-range effects, such as chemical bonding, steric repulsion, and electronic state selectivity, must be considered. © 2005 American Institute of Physics.