RADTRAN is an internationally accepted program and code for calculating the risks of transporting radioactive materials. The first versions of the program, RADTRAN I and II, were developed for NUREG-0170 (USNRC, 1977), the first environmental statement on transportation of radioactive materials. RADTRAN and its associated software have undergone a number of improvements and advances consistent with improvements in both available data and computer technology. The version of RADTRAN currently bundled with RadCat is RADTRAN 6.0. This document provides a detailed discussion and a guide for the use of the RadCat 3.0 Graphical User Interface input file generator for the RADTRAN code. RadCat 3.0 integrates the newest analysis capabilities of RADTRAN 6.0 which includes an economic model, updated loss-of-lead shielding model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.0.
Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (Φ{phonetic}) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of Φ{phonetic} = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDCcompression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde. These two species were analyzed using high-performance liquid chromatography. In addition, standard emissions-bench exhaust analysis equipment was used to measure total HC, CO, CO2, O2, and NOX simultaneously with the sampling for the detailed-speciation analysis. Good overall agreement was found between the emissions-bench data and total HC from the detailed measurements. Unreacted fuel, iso-octane, was by far the most prevalent HC species at all operating conditions. Numerous other HC and oxygenated HC (OHC) species were found that could be identified as breakdown products of iso-octane. Several smaller HC and OHC species were also identified. At the highest Φ{phonetic}, emissions of all species were low, except iso-octane. As Φ{phonetic} was reduced, emissions of all species increased, but the rate of increase varied substantially for the different species. Analysis showed that these differences were related to the degree of breakdown from the parent fuel and the in-cylinder location where they formed. SOI-sweep results indicated that stratification improves combustion efficiency by reducing the fuel penetration to the crevice and cylinder-wall boundary-layer regions, as well as by creating a locally richer mixture that burns hotter and more completely.
This work explores the high-load limits of HCCI for naturally aspirated operation. This is done for three fuels with various autoignition reactivity: iso-octane, PRF80, and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liter displacement), mostly with a CR = 14 piston installed, but with some tests at CR = 18. Five load-limiting factors were identified: 1) NOx-induced combustion-phasing run-away, 2) wall-heating-induced run-away, 3) EGR-induced oxygen deprivation, 4) wandering unsteady combustion, and 5) excessive exhaust NOx. These experiments at 1200 rpm show that the actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the selected CA50, and in some cases, the tolerable level of NOx emissions. For iso-octane, which has the highest resistance to autoignition of the fuels tested, the NOx emissions become unacceptable at IMEPg = 473 kPa. This happens before wandering and unsteady combustion becomes an issue for IMEPg > 486 kPa. The NOx is caused by high peak-combustion temperatures resulting from the high intake temperature required for this low-reactivity fuel. Iso-octane operation with a CR = 18 piston reduces the intake-temperature requirement. Consequently, the exhaust NOx issue vanishes while the IMEPg can be increased to 520 kPa before wall-heating-induced run-away become an issue. For a very reactive fuel like PRF60, large amounts of EGR are required to control the combustion phasing. Therefore, the maximum IMEPg becomes limited at 643 kPa by the available oxygen as the EGR gases displace air. A fuel of intermediate reactivity, PRF80, exhibits the highest IMEPg for the conditions of this study - 651 kPa. For this fuel, the maximum IMEPg becomes limited by NOx-induced run-away. This happens because even small amounts of NOx recycled via residuals enhance the autoignition sufficiently to advance the ignition point. This leads to higher peak-combustion temperatures and more NOx formation, thus making a very rapid run-away situation inevitable.
For logistical reasons, the military requires that jet fuel (JP-8, F-34) be used in both jet engines and diesel engines. While JP-8-fueled diesel engines appear to operate successfully in many cases, negative impacts, including engine failures, are occasionally reported. As diesel combustion with JP-8 has not been explored in great detail, fundamental information about JP-8 fuel spray combustion is needed. In this study, we report measurements of liquid-phase penetration length, vapor penetration, and ignition delay made in an optically- accessible combustion vessel over a range of high- temperature, high-pressure operating conditions applicable to a diesel engine. Results show that the liquid-phase penetration of JP-8 is less than that of diesel, owing to the lower boiling point temperatures of JP-8. Despite the more rapid vaporization, the vapor penetration rate of JP-8 matches that of diesel and ignition does not advance. In fact, with no required cetane number specification for JP-8, ignition delay times are 25-50% longer for this 38-cetane-number JP-8 fuel sample compared to a 46-cetane-number #2 diesel sample. High-speed shadowgraph imaging shows that a cool flame precedes ignition for both diesel and JP-8 but the time of the cool flame heat release is delayed for JP- 8, consistent with the overall ignition delay trend.
A very general and robust approach to solving continuous-variable optimization problems involving uncertainty in the objective function is through the use of ordinal optimization. At each step in the optimization problem, improvement is based only on a relative ranking of the uncertainty effects on local design alternatives, rather than on precise quantification of the effect. One simply asks "Is that alternative better or worse than this one?"-not "HOW MUCH better or worse is that alternative to this one?" The answer to the latter question requires precise characterization of the uncertainty- with the corresponding sampling/integration expense for precise resolution. By looking at things from an ordinal ranking perspective instead, the trade-off between computational expense and vagueness in the uncertainty characterization can be managed to make cost-effective stepping decisions in the design space. This paper demonstrates correct advancement in a continuous-variable probabilistic optimization problem despite extreme vagueness in the statistical characterization of the design options. It is explained and shown how spatial correlation of uncertainty in such design problems can be exploited to dramatically increase the efficiency of ordinal approaches to optimization under uncertainty.
In an optically accessible single-cylinder engine fueled with hydrogen, acetone planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) are used to evaluate in-cylinder mixture formation. The experiments include measurements for engine operation with hydrogen injection in-cylinder either prior to or after intake valve closure (IVC). Pre-IVC injection is used to produce a near-homogeneous mixture for PLIF calibration experiments and to establish a baseline comparison for post-IVC injection. Calibration experiments and a temperature correction allow conversion of the acetone fluorescence signal to equivalence ratio. For post-IVC injection with start of injection (SOI) coincident with IVC, PLIF results are similar to pre-IVC injection. With retard of SOI from IVC, mixture inhomogeneities increase monotonically, with high hydrogen concentration spatially located near the injector and within a smaller volume. For injection late in the cycle, the turbulent fuel-rich area is sharply delineated from the more quiescent fuel-lean region. The PIV vector plots suggest that the observed spatial distribution of hydrogen for SOI retarded from IVC is a consequence of the in-cylinder flow field generated by the injection event. Specifically, in the measured r-θ plane of the cylinder and in the field of view imaged, the vector plots show a large-scale mean flow towards the injector. It is conjectured that the observed flow field results from jet-wall interactions that redirect the leading edge of some of the fuel jets back towards the injector, creating a counter-flow with respect to the other fuel jets, which inhibits further jet penetration. The net result is a high hydrogen concentration near the injector. This scenario confirms that the injector tip geometry, injector location, and injection timing are critical parameters with respect to in-cylinder mixing in direct-injection hydrogenfuelled engine.
A very general and robust approach to solving continuous-variable optimization problems involving uncertainty in the objective function is through the use of ordinal optimization. At each step in the optimization problem, improvement is based only on a relative ranking of the uncertainty effects on local design alternatives, rather than on precise quantification of the effect. One simply asks "Is that alternative better or worse than this one?"-not "HOW MUCH better or worse is that alternative to this one?" The answer to the latter question requires precise characterization of the uncertainty- with the corresponding sampling/integration expense for precise resolution. By looking at things from an ordinal ranking perspective instead, the trade-off between computational expense and vagueness in the uncertainty characterization can be managed to make cost-effective stepping decisions in the design space. This paper demonstrates correct advancement in a continuous-variable probabilistic optimization problem despite extreme vagueness in the statistical characterization of the design options. It is explained and shown how spatial correlation of uncertainty in such design problems can be exploited to dramatically increase the efficiency of ordinal approaches to optimization under uncertainty.
Martin, Glen C.; Mueller, Charles J.; Milam, David M.; Radovanovic, Michael S.; Gehrke, Christopher R.
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder, optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70° and 5 holes x 35°) with 103-μmdiameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70° before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around a 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with poolfire activity. Smoke and NOx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.
Many experimental efforts to track fuel-air-residual mixture preparation in internal combustion engines have employed laser induced fluorescence (LIF) of tracers. Acetone and 3-pentanone are often chosen as tracers because of their relatively strong LIF signal, weak quenching, and reasonable match to thermo-chemical properties of common fuels such as iso-octane. However, the addition of these tracers to fuel-air mixtures could affect combustion behavior. In this work, we assess these effects to better understand limitations of tracer-based engine measurements. The effects of tracer seeding on combustion phasing, duration, and variation are studied in an HCCI engine using a recompression strategy to accommodate single- and multi-stage-ignition fuels. Using direct-injected (DI) fuels iso-octane and n-heptane, comparisons are made of combustion performance with and without seeding of the intake air (air seeding, as opposed to the more common fuel seeding, is a variation of LIF used to measure residual-gas concentration). Chemical and premixing effects of tracer addition are distinguished by substituting equivalent amounts of fuel for the tracer. Chemical kinetic simulations of iso-octane and n-heptane oxidation help explain the experimentally determined trends. Results show that the phasing of iso-octane combustion can be significantly impacted by premixing effects because of the sensitivity of ignition to charge temperature. For n-heptane, the chemical effects of tracer addition are shown to be more pronounced because of impact on low-temperature heat release. Acetone retards the combustion for both single- and two- stage-ignition fuels, whereas 3-pentanone advances iso- octane combustion while retarding n-heptane. Overall, we found that the impact of tracer addition is modest for the chosen operating conditions since varying the intake temperature can easily compensate for it.
A simplified model was developed and is presented in this report for simulating thermal transport coupled with chemical reactions that lead to the pyrotechnic ignition of TiH1.65/KClO4 powder. The model takes into account Joule heating via a bridgewire, thermal contact resistance at the wire/powder interface, convective heat loss to the surroundings, and heat released from the TiH1.65- and KClO4-decomposition and TiO2-oxidation reactions. Chemical kinetic sub-models were put forth to describe the chemical reaction rate(s) and quantify the resultant heat release. The simplified model predicts pyrotechnic ignition when heat from the pyrotechnic reactions is accounted for. Effects of six key parameters on ignition were examined. It was found that the two reaction-rate parameters and the thermal contact resistance significantly affect the dynamic ignition process whereas the convective heat transfer coefficient essentially has no effect on the ignition time. Effects of the initial/ambient temperature and electrical current load through the wire are as expected. Ignition time increases as the initial/ambient temperature is lowered or the wire current load is reduced. Lastly, critical needs such as experiments to determine reaction-rate and other model-input parameters and to measure temperature profiles, time to ignition and burn-rate data for model validation as well as efforts in incorporating reaction-rate dependency on pressure are pointed out.
Data and models of aerosol particle deposition in leak pathways are described. Pathways considered include capillaries, orifices, slots and cracks in concrete. The Morewitz-Vaughan criterion for aerosol plugging of leak pathways is shown to be applicable only to a limited range of particle settling velocities and Stokes numbers. More useful are sampling efficiency criteria defined by Davies and by Liu and Agarwal. Deposition of particles can be limited by bounce from surfaces defining leak pathways and by resuspension of particles deposited on these surfaces. A model of the probability of particle bounce is described. Resuspension of deposited particles can be triggered by changes in flow conditions, particle impact on deposits and by shock or vibration of the surfaces. This examination was performed as part of the review of the AP1000 Standard Combined License Technical Report, APP-GW-GLN-12, Revision 0, 'Offsite and Control Room Dose Changes' (TR-112) in support of the USNRC AP1000 Standard Combined License Pre-Application Review.