Publications

Results 90126–90150 of 99,299

Search results

Jump to search filters

Development and testing of insulated drillpipe

SPE Drilling and Completion

Finger, John T.; Jacobson, Ronald D.

The Geothermal Research Dept. at Sandia Natl. Laboratories, in collaboration with Drill Cool Systems Inc., has worked to develop and test insulated drillpipe (IDP). IDP will allow much cooler drilling fluid to reach the bottom of the hole, making possible the use of downhole motors, electronics, and steering tools that are now useless in high-temperature formations. Other advantages of cooler fluid include reduced degradation of drilling fluid, longer bit life, and reduced corrosion rates. This article describes the theoretical background, laboratory testing, and field testing of IDP, including structural and thermal laboratory testing procedures and results. We also give results for a field test in a geothermal well in which circulating temperatures in IDP are compared with those in conventional drillpipe (CDP) at different flow rates. A brief description of the software used to model wellbore temperature and to calculate sensitivity in IDP design differences is included, along with a comparison of calculated and measured wellbore temperatures in the field test. There is also analysis of mixed (IDP and CDP) drillstrings and discussion of where IDP should be placed in a mixed string.

More Details

Sandia heat flux gauge thermal response and uncertainty models

ASTM Special Technical Publication

Blanchat, Thomas K.; Humphries, Larry L.; Gill, Walter

A study was performed on the Sandia Heat Flux Gauge (HFG) developed as a rugged, cost effective technique for performing steady state heat flux measurements in the pool fire environment. The technique involved reducing the time-temperature history of a thin metal plate to an incident heat flux via a dynamic thermal model, even though the gauge was intended for use at steady state. A validation experiment was presented where the gauge was exposed to a step input of radiant heat flux.

More Details

Radial moment calculations of coupled electron-photon beams

Nuclear Science and Engineering

Franke, Brian C.

We consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of three-dimensional (3-D) beams of radiation as a function of depth into the slab, by solving systems of one-dimensional (1-D) transport equations. We implement these radial-moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified PN synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged-particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. We demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, we obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.

More Details

A family of transients suitable for reproduction on a shaker based on the cosm(x) window

Journal of the IEST

Smallwood, David O.

A family of transients with the property that the initial and final acceleration, velocity, and displacement are all zero is derived. The transients are based on a relatively arbitrary function multiplied by window of the form cosm(x). Several special cases are discussed which result in odd acceleration and displacement functions. This is desirable for shaker reproduction because the required positive and negative peak accelerations and displacements will be balanced. Another special case is discussed which will permit the development of transients with the first five (0-4) temporal moments specified. The transients are defined with three or four parameters that will allow sums of components to be found which will match a variety of shock response spectra.

More Details

Verification and validation in computational fluid dynamics

Progress in Aerospace Sciences

Oberkampf, William L.; Trucano, Timothy G.

The verification and validation (V & V) in computational fluid dynamics was presented. The methods and procedures for assessing V & V were presented. The issues such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainity, conceptual sources of error and uncertainity, and the relationship between validation and prediction was discussed. Methods for determining the accuracy of numerical solutions were presented and the importance of software testing during verification activities were emphasized.

More Details

Processor allocation on Cplant: Achieving general processor locality using one-dimensional allocation strategies

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Leung, Vitus J.; Johnston, Jeanette R.

The Computational Plant or Cplant is a commodity-based supercomputer under development at Sandia National Laboratories. This paper describes resource-allocation strategies to achieve processor locality for parallel jobs in Cplant and other supercomputers. Users of Cplant and other Sandia supercomputers submit parallel jobs to a job queue. When a job is scheduled to run, it is assigned to a set of processors. To obtain maximum throughput, jobs should be allocated to localized clusters of processors to minimize communication costs and to avoid bandwidth contention caused by overlapping jobs. This paper introduces new allocation strategies and performance metrics based on space-filling curves and one dimensional allocation strategies. These algorithms are general and simple. Preliminary simulations and Cplant experiments indicate that both space-filling curves and one-dimensional packing improve processor locality compared to the sorted free list strategy previously used on Cplant. These new allocation strategies are implemented in the new release of the Cplant System Software, Version 2.0, phased into the Cplant systems at Sandia by May 2002.

More Details

From ferroelectric to quantum paraelectric: KTa1-xNbxO3 (KTN), a model system

Materials Research Society Symposium - Proceedings

Samara, George A.

The ABO3 perovskite oxides constitute an important family of technologically important ferroelectrics whose relatively simple chemical and crystallographic structures have contributed significantly to our understanding of ferroelectricity. They readily undergo structural phase transitions involving both polar and non-polar distortions from the ideal cubic lattice. This paper focuses on the mixed perovskite system KTa1-xNbxO3, or KTN, which has turned out to be a model system. While the end members KTaO3 and KNbO3 might be expected to be similar, in reality they exhibit very different properties. Their mixed crystals, which can be grown over the whole composition range, exhibit a rich set of phenomena whose study has added greatly to our current understanding of the phase trsitions and dielectric properties of these materials. Included among these phenomena are soft mode response, ferroelectric (FE)-to-relaxor (R) crossover, quantum mechanical suppression of the transition, the appearance of a quantum paraelectric state and relaxational effects associated with dipolar impurities. Each of these phenomena is discussed briefly and illustrated. Some emphasis is on the unique role of pressure in elucidating the physics involved.

More Details

Optimal time-critical scheduling via resource augmentation

Algorithmica (New York)

Phillips, Cynthia A.

We consider two fundamental problems in dynamic scheduling: scheduling to meet deadlines in a preemptive multiprocessor setting, and scheduling to provide good response time in a number of scheduling environments. When viewed from the perspective of traditional worst-case analysis, no good on-line algorithms exist for these problems, and for some variants no good off-line algorithms exist unless T = NP. We study these problems using a relaxed notion of competitive analysis, introduced by Kalyanasundaram and Pruhs, in which the on-line algorithm is allowed more resources than the optimal off-line algorithm to which it is compared. Using this approach, we establish that several well-known on-line algorithms, that have poor performance from an absolute worst-case perspective, are optimal for the problems in question when allowed moderately more resources. For optimization of average flow time, these are the first results of any sort, for any NP-hard version of the problem, that indicate that it might be possible to design good approximation algorithms.

More Details

Damage Tolerance Assessment of Bonded Composite Doubler Repairs for Commercial Aircraft Applications

Advances in the Bonded Composite Repair of Metallic Aircraft Structure

Roach, Dennis P.

One of the concerns surrounding composite doubler technology pertains to long-term survivability, especially in the presence of non-optimum installations. This test program demonstrated the damage-tolerance capabilities of bonded composite doublers. The fatigue and strength tests quantified the structural response and crack-abatement capabilities of boron-epoxy doublers in the presence of worst-case flaw scenarios. The engineered flaws included cracks in the parent material, disbonds in the adhesive layer, and impact damage to the composite laminate. Environmental conditions representing temperature and humidity exposure were also included in the coupon tests. Large strains immediately adjacent to the doubler flaws emphasize the fact that relatively large disbond or delamination flaws (up to 100 diameter) in the composite doubler have only localized effects on strain and minimal effect on the overall doubler performance (i.e., undesirable strain relief over disbond but favorable load transfer immediately next to disbond). This statement is made relative to the inspection requirement that result in the detection of disbonds/delaminations of 0.5 '' diameter or greater. The point at which disbonds become detrimental depends upon the size and location of the disbond and the strain field around the doubler. This study did not attempt to determine a "flaw size vs. effect" relation. Rather, it used flaws that were twice as large as the detectable limit to demonstrate the ability of composite doublers to tolerate potential damage.

More Details

Statistical Validation of Engineering and Scientific Models: A Maximum Likelihood Based Metric

Hills, Richard G.; Trucano, Timothy G.

Two major issues associated with model validation are addressed here. First, we present a maximum likelihood approach to define and evaluate a model validation metric. The advantage of this approach is it is more easily applied to nonlinear problems than the methods presented earlier by Hills and Trucano (1999, 2001); the method is based on optimization for which software packages are readily available; and the method can more easily be extended to handle measurement uncertainty and prediction uncertainty with different probability structures. Several examples are presented utilizing this metric. We show conditions under which this approach reduces to the approach developed previously by Hills and Trucano (2001). Secondly, we expand our earlier discussions (Hills and Trucano, 1999, 2001) on the impact of multivariate correlation and the effect of this on model validation metrics. We show that ignoring correlation in multivariate data can lead to misleading results, such as rejecting a good model when sufficient evidence to do so is not available.

More Details

DNA Microarray Technology

Davidson, George S.

Collaboration between Sandia National Laboratories and the University of New Mexico Biology Department resulted in the capability to train students in microarray techniques and the interpretation of data from microarray experiments. These studies provide for a better understanding of the role of stationary phase and the gene regulation involved in exit from stationary phase, which may eventually have important clinical implications. Importantly, this research trained numerous students and is the basis for three new Ph.D. projects.

More Details

Reducing System Artifacts in Hyperspectral Image Data Analysis with the Use of Estimates of the Error Covariance in the Data

Haaland, David M.; Van Benthem, Mark H.

Hyperspectral Fourier transform infrared images have been obtained from a neoprene sample aged in air at elevated temperatures. The massive amount of spectra available from this heterogeneous sample provides the opportunity to perform quantitative analysis of the spectral data without the need for calibration standards. Multivariate curve resolution (MCR) methods with non-negativity constraints applied to the iterative alternating least squares analysis of the spectral data has been shown to achieve the goal of quantitative image analysis without the use of standards. However, the pure-component spectra and the relative concentration maps were heavily contaminated by the presence of system artifacts in the spectral data. We have demonstrated that the detrimental effects of these artifacts can be minimized by adding an estimate of the error covariance structure of the spectral image data to the MCR algorithm. The estimate is added by augmenting the concentration and pure-component spectra matrices with scores and eigenvectors obtained from the mean-centered repeat image differences of the sample. The implementation of augmentation is accomplished by employing efficient equality constraints on the MCR analysis. Augmentation with the scores from the repeat images is found to primarily improve the pure-component spectral estimates while augmentation with the corresponding eigenvectors primarily improves the concentration maps. Augmentation with both scores and eigenvectors yielded the best result by generating less noisy pure-component spectral estimates and relative concentration maps that were largely free from a striping artifact that is present due to system errors in the FT-IR images. The MCR methods presented are general and can also be applied productively to non-image spectral data.

More Details

Field Test Kit for Gun Residue Detection

Walker, Pamela K.; Rodacy, Philip J.

One of the major needs of the law enforcement field is a product that quickly, accurately, and inexpensively identifies whether a person has recently fired a gun--even if the suspect has attempted to wash the traces of gunpowder off. The Field Test Kit for Gunshot Residue Identification based on Sandia National Laboratories technology works with a wide variety of handguns and other weaponry using gunpowder. There are several organic chemicals in small arms propellants such as nitrocellulose, nitroglycerine, dinitrotoluene, and nitrites left behind after the firing of a gun that result from the incomplete combustion of the gunpowder. Sandia has developed a colorimetric shooter identification kit for in situ detection of gunshot residue (GSR) from a suspect. The test kit is the first of its kind and is small, inexpensive, and easily transported by individual law enforcement personnel requiring minimal training for effective use. It will provide immediate information identifying gunshot residue.

More Details

Nonactinide Isotopes and Sealed Sources Web Application

Fernandez, James P.; Jones, Michael L.; Farnum, Cathy O.; Waldron, Carol A.

The Nonactinide Isotopes and Sealed Sources (NISS) Web Application is a web-based database query and data management tool designed to facilitate the identification and reapplication of radioactive sources throughout the Department of Energy (DOE) complex. It provides search capability to the general Internet community and detailed data management functions to contributing site administrators.

More Details

Innovative Measurement Diagnostics for Analysis of Jet Interactions in Rotating Flowfields

Amatucci, Vincent A.; Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.; Bourdon, Christopher

The present document summarizes the experimental efforts of a three-year study funded under the Laboratory Directed Research and Development program of Sandia National Laboratories. The Innovative Diagnostics LDRD project was designed to develop new measurement capabilities to examine the interaction of a propulsive spin jet in a transonic freestream for a model in a wind tunnel. The project motivation was the type of jet/fin interactions commonly occurring during deployment of weapon systems. In particular, the two phenomena of interest were the interaction of the propulsive spin jet with the freestream in the vicinity of the nozzle and the impact of the spin rocket plume and its vortices on the downstream fins. The main thrust of the technical developments was to incorporate small-size, Lagrangian sensors for pressure and roll-rate on a scale model and include data acquisition, transmission, and power circuitry onboard. FY01 was the final year of the three-year LDRD project and the team accomplished much of the project goals including use of micron-scale pressure sensors, an onboard telemetry system for data acquisition and transfer, onboard jet exhaust, and roll-rate measurements. A new wind tunnel model was designed, fabricated, and tested for the program which incorporated the ability to house multiple MEMS-based pressure sensors, interchangeable vehicle fins with pressure instrumentation, an onboard multiple-channel telemetry data package, and a high-pressure jet exhaust simulating a spin rocket motor plume. Experiments were conducted for a variety of MEMS-based pressure sensors to determine performance and sensitivity in order to select pressure transducers for use. The data acquisition and analysis path was most successful by using multiple, 16-channel data processors with telemetry capability to a receiver outside the wind tunnel. The development of the various instrumentation paths led to the fabrication and installation of a new wind tunnel model for baseline non-rotating experiments to validate the durability of the technologies and techniques. The program successfully investigated a wide variety of instrumentation and experimental techniques and ended with basic experiments for a non-rotating model with jet-on with the onboard jets operating and both rotating and non-rotating model conditions.

More Details

Microscale Shock Wave Physics Using Photonic Driver Techniques

Setchell, Robert E.; Trott, Wayne M.; Castaeda, Jaime N.; Farnsworth Jr., Archie V.; Berry, Dante M.

This report summarizes a multiyear effort to establish a new capability for determining dynamic material properties. By utilizing a significant reduction in experimental length and time scales, this new capability addresses both the high per-experiment costs of current methods and the inability of these methods to characterize materials having very small dimensions. Possible applications include bulk-processed materials with minimal dimensions, very scarce or hazardous materials, and materials that can only be made with microscale dimensions. Based on earlier work to develop laser-based techniques for detonating explosives, the current study examined the laser acceleration, or photonic driving, of small metal discs (''flyers'') that can generate controlled, planar shockwaves in test materials upon impact. Sub-nanosecond interferometric diagnostics were developed previously to examine the motion and impact of laser-driven flyers. To address a broad range of materials and stress states, photonic driving levels must be scaled up considerably from the levels used in earlier studies. Higher driving levels, however, increase concerns over laser-induced damage in optics and excessive heating of laser-accelerated materials. Sufficiently high levels require custom beam-shaping optics to ensure planar acceleration of flyers. The present study involved the development and evaluation of photonic driving systems at two driving levels, numerical simulations of flyer acceleration and impact using the CTH hydrodynamics code, design and fabrication of launch assemblies, improvements in diagnostic instrumentation, and validation experiments on both bulk and thin-film materials having well-established shock properties. The primary conclusion is that photonic driving techniques are viable additions to the methods currently used to obtain dynamic material properties. Improvements in launch conditions and diagnostics can certainly be made, but the main challenge to future applications will be the successful design and fabrication of test assemblies for materials of interest.

More Details

Low Mass Transmission Lines for Z-Pinch Driven Inertial Fusion

Slutz, Stephen A.; Olson, Craig L.

Recyclable transmission lines (RTL) are studied as a means of repetitively driving z pinches. The lowest reprocessing costs should be obtained by minimizing the mass of the RTL. Low mass transmission lines (LMTL) could also help reduce the cost of a single shot facility such as the proposed X-1 accelerator and make z-pinch driven space propulsion feasible. We present calculations to determine the minimum LMTL electrode mass to provide sufficient inertia against the magnetic pressure produced by the large currents needed to drive the z pinches. The results indicate an electrode thickness which is much smaller than the resistive skin depth. We have performed experiments to determine if such thin electrodes can efficiently carry the required current. The tests were performed with various thickness of materials. The results indicate that LMTLs should efficiently carry the large z-pinch currents needed for inertial fusion. We also use our results to estimate of the performance of pulsed power driven pulsed nuclear rockets.

More Details

Experimental Comparison of 2-3MV X-Ray Sources for Flash Radiography

Menge, Peter R.; Welch, Dale; Johnson, David L.; Maenchen, John E.; Olson, Craig L.; Rovang, Dean C.; Oliver, Bryan V.; Rose, David

High-brightness flash x-ray sources are needed for penetrating dynamic radiography for a variety of applications. Various bremsstrahlung source experiments have been conducted on the TriMeV accelerator (3MV, 60 {Omega}, 20 ns) to determine the best diode and focusing configuration in the 2-3 MV range. Three classes of candidate diodes were examined: gas cell focusing, magnetically immersed, and rod pinch. The best result for the gas cell diode was 6 rad at 1 meter from the source with a 5 mm diameter x-ray spot. Using a 0.5 mm diameter cathode immersed in a 17 T solenoidal magnetic field, the best shot produced 4.1 rad with a 2.9 mm spot. The rod pinch diode demonstrated very reproducible radiographic spots between 0.75 and 0.8 mm in diameter, producing 1.2 rad. This represents a factor of eight improvement in the TriMeV flash radiographic capability above the original gas cell diode to a figure of merit (dose/spot diameter) > 1.8 rad/mm. These results clearly show the rod pinch diode to be the choice x-ray source for flash radiography at 2-3 M V endpoint.

More Details

Preparation Effects on the Performance of Silica-Doped Hydrous Titanium Oxide (HTO:Si)-Supported Pt Catalysts for Lean-Burn NOx Reduction by Hydrocarbons

Gardner, Timothy J.; Mclaughlin, Linda I.; Mowery-Evans, Deborah L.; Sandoval, Ronald S.

This report describes the development of bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported Pt catalysts for lean-burn NOx catalyst applications. The effects of various preparation methods, including both anion and cation exchange, and specifically the effect of Na content on the performance of Pt/HTO:Si catalysts, were evaluated. Pt/HTO:Si catalysts with low Na content (< 0.5 wt.%) were found to be very active for NOx reduction in simulated lean-burn exhaust environments utilizing propylene as the major reductant species. The activity and performance of these low Na Pt/HTO:Si catalysts were comparable to supported Pt catalysts prepared using conventional oxide or zeolite supports. In ramp down temperature profile test conditions, Pt/HTO:Si catalysts with Na contents in the range of 3-5 wt.% showed a wide temperature window of appreciable NOx conversion relative to low Na Pt/HTO:Si catalysts. Full reactant species analysis using both ramp up and isothermal test conditions with the high Na Pt/HTO:Si catalysts, as well as diffuse reflectance FTIR studies, showed that this phenomenon was related to transient NOx storage effects associated with NaNO{sub 2}/NaNO{sub 3} formation. These nitrite/nitrate species were found to decompose and release NOx at temperatures above 300 C in the reaction environment (ramp up profile). A separate NOx uptake experiment at 275 C in NO/N{sub 2}/O{sub 2} showed that the Na phase was inefficiently utilized for NOx storage. Steady state tests showed that the effect of increased Na content was to delay NOx light-off and to decrease the maximum NOx conversion. Similar results were observed for high K Pt/HTO:Si catalysts, and the effects of high alkali content were found to be independent of the sample preparation technique. Catalyst characterization (BET surface area, H{sub 2} chemisorption, and transmission electron microscopy) was performed to elucidate differences between the HTO- and HTO:Si-supported Pt catalysts and conventional oxide- or zeolite-supported Pt catalysts.

More Details

The SEAWOLF Flume: Sediment Erosion Actuated by Wave Oscillations and Linear Flow

Jepsen, Richard A.; Roberts, Jesse D.

Sandia National Laboratories has previously developed a unidirectional High Shear Stress Sediment Erosion flume for the US Army Corps of Engineers, Coastal Hydraulics Laboratory. The flow regime for this flume has limited applicability to wave-dominated environments. A significant design modification to the existing flume allows oscillatory flow to be superimposed upon a unidirectional current. The new flume simulates highshear stress erosion processes experienced in coastal waters where wave forcing dominates the system. Flow velocity measurements, and erosion experiments with known sediment samples were performed with the new flume. Also, preliminary computational flow models closely simulate experimental results and allow for a detailed assessment of the induced shear stresses at the sediment surface.

More Details

Long-Term Spatial Data Preservation and Archiving: What Are the Issues?

Bleakly, Denise

The Department of Energy (DOE) is moving towards Long-Term Stewardship (LTS) of many environmental restoration sites that cannot be released for unrestricted use. One aspect of information management for LTS is geospatial data archiving. This report discusses the challenges facing the DOE LTS program concerning the data management and archiving of geospatial data. It discusses challenges in using electronic media for archiving, overcoming technological obsolescence, data refreshing, data migration, and emulation. It gives an overview of existing guidance and policy and discusses what the United States Geological Service (USGS), National Oceanic and Atmospheric Administration (NOAA) and the Federal Emergency Management Agency (FEMA) are doing to archive the geospatial data that their agencies are responsible for. In the conclusion, this report provides issues for further discussion around long-term spatial data archiving.

More Details

Final Test and Evaluation Results from the Solar Two Project

Bradshaw, Robert W.; Pacheco, James E.; Prairie, Michael R.; Reilly, Hugh E.; Showalter, Steven K.; Dawson, Daniel B.; Goods, Steven H.; Jones, Scott A.; Kolb, Gregory J.

Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.

More Details

Sandia National Laboratories ASCI Applications Software Quality Engineering Practices

Zepper, John D.; Aragon, Kathryn; Minana, Molly A.; Byle, Kathleen A.; Eaton, Donna S.

This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool. These sections map practices and activities at Sandia to the ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a Department of Energy document.

More Details

Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes

Evans, Lindsey; Miller, James E.

Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel{reg_sign} Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To overcome this barrier, at least two improvements are required. First, new and different contactor geometries are necessary to achieve efficient contact with an extremely low pressure drop. Second, the temperature limits of the membranes must be increased. In the absence of these improvements, sweeping gas MD will not be economically competitive. However, the membranes may still find use in hybrid desalination systems.

More Details
Results 90126–90150 of 99,299
Results 90126–90150 of 99,299