The additive manufacture of compositionally graded Al/Cu parts by laser engineered net shaping (LENS) is demonstrated. The use of a blue light build laser enabled deposition on a Cu substrate. The thermal gradient and rapid solidification inherent to selective laser melting enabled mass transport of Cu up to 4 mm from a Cu substrate through a pure Al deposition, providing a means of producing gradients with finer step sizes than the printed layer thicknesses. Divorcing gradient continuity from layer or particle size makes LENS a potentially enabling technology for the manufacture of graded density impactors for ramp compression experiments. Printing graded structures with pure Al, however, was prevented by the growth of Al2Cu3 dendrites and acicular grains amid a matrix of Al2Cu. A combination of adding TiB2 grain refining powder and actively varying print layer composition suppressed the dendritic growth mode and produced an equiaxed microstructure in a compositionally graded part. Material phase was characterized for crystal structure and nanoindentation hardness to enable a discussion of phase evolution in the rapidly solidifying melt pool of a LENS print.
Future machine learning strategies for materials process optimization will likely replace human capital-intensive artisan research with autonomous and/or accelerated approaches. Such automation enables accelerated multimodal characterization that simultaneously minimizes human errors, lowers costs, enhances statistical sampling, and allows scientists to allocate their time to critical thinking instead of repetitive manual tasks. Previous acceleration efforts to synthesize and evaluate materials have often employed elaborate robotic self-driving laboratories or used specialized strategies that are difficult to generalize. Herein we describe an implemented workflow for accelerating the multimodal characterization of a combinatorial set of 915 electroplated Ni and Ni–Fe thin films resulting in a data cube with over 160,000 individual data files. Our acceleration strategies do not require manufacturing-scale resources and are thus amenable to typical materials research facilities in academic, government, or commercial laboratories. The workflow demonstrated the acceleration of six characterization modalities: optical microscopy, laser profilometry, X-ray diffraction, X-ray fluorescence, nanoindentation, and tribological (friction and wear) testing, each with speedup factors ranging from 13–46x. In addition, automated data upload to a repository using FAIR data principles was accelerated by 64x.
Multimodal datasets of materials are rich sources of information which can be leveraged for expedited discovery of process–structure–property relationships and for designing materials with targeted structures and/or properties. For this data descriptor article, we provide a multimodal dataset of magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. Here, the phase, structure, surface morphology, and composition of the Mo thin films were characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet resistance—were also measured to provide additional film characteristics and behaviors. Additionally, nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived from the experimental datasets using traditional methods. Minimal analysis and discussion of the results are provided in this data descriptor article to limit the authors’ preconceived interpretations of the data. Overall, the data modalities are consistent with previous reports of refractory metal thin films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a public repository in the Materials Data Facility.
Easily measured metrics that could assign quantifiable values to coating batches for quality control have started to be developed. High-density is an attribute of quality films. Increased density results in harder, more wear resistant coatings in inert and humid environments. Denser films are more resistant to oxidation from aging, limiting the severity and depth of oxide into the coating. Future work includes using metrics for quality. The next step is to develop in house deposition capabilities to develop process-structure relationships.
This work investigates the role of water and oxygen on the shear-induced structural modifications of molybdenum disulfide (MoS2) coatings for space applications and the impact on friction due to oxidation from aging. We observed from transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) that sliding in both an inert environment (i.e., dry N2) or humid lab air forms basally oriented (002) running films of varying thickness and structure. Tribological testing of the basally oriented surfaces created in dry N2 and air showed lower initial friction than a coating with an amorphous or nanocrystalline microstructure. Aging of coatings with basally oriented surfaces was performed by heating samples at 250 °C for 24 h. Post aging tribological testing of the as-deposited coating showed increased initial friction and a longer transition from higher friction to lower friction (i.e., run-in) due to oxidation of the surface. Tribological testing of raster patches formed in dry N2 and air both showed an improved resistance to oxidation and reduced initial friction after aging. The results from this study have implications for the use of MoS2-coated mechanisms in aerospace and space applications and highlight the importance of preflight testing. Preflight cycling of components in inert or air environments provides an oriented surface microstructure with fewer interaction sites for oxidation and a lower shear strength, reducing the initial friction coefficient and oxidation due to aging or exposure to reactive species (i.e., atomic oxygen).
Laser beam directed energy deposition has become an increasingly popular advanced manufacturing technique for materials discovery as a result of the in situ alloying capability. In this study, we leverage an additive manufacturing enabled high throughput materials discovery approach to explore the composition space of a graded Wx(CoCrFeMnNi)100−x sample spanning 0 ≤ x ≤ 21 at%. In addition to microstructural and mechanical characterization, synchrotron high speed x-ray computer aided tomography was conducted on a W20(CoCrFeMnNi)80 composition to visualize melting dynamics, powder-laser interactions, and remelting effects of previously consolidated material. Results reveal the formation of the Fe7W6 intermetallic phase at W concentrations> 6 at%, despite the high configurational entropy. Unincorporated W particles also occurred at W concentrations> 10 at% accompanied by a dissolution band of Fe7W6 at the W/matrix interface and hardness values greater than 400 HV. The primary strengthening mechanism is attributed to the reinforcement of the Fe7W6 and W phases as a metal matrix composite. The in situ high speed x-ray imaging during remelting showed that an additional laser pass did not promote further mixing of the Fe7W6 or W phases suggesting that, despite the dissolution of the W into the Fe7W6 phase being thermodynamically favored, it is kinetically limited by the thickness/diffusivity of the intermetallic phase, and the rapid solidification of the laser-based process.
The mechanical performance of an Fe-Co intermetallic alloy processed by laser powder bed fusion (L-PBF) and laser directed energy deposition (L-DED) additive manufacturing is compared. L-PBF material was characterized by high strength (500–550 MPa) and high ductility (35%) in tension, corresponding to a ~250% increase in strength and an order-of-magnitude improvement in ductility relative to conventional material. Conversely, L-DED material exhibited similarly poor tensile properties to the conventional wrought alloy, with low strength (200–300 MPa) and low ductility (0–2.7%). The disparity in properties between L-PBF and L-DED material is discussed in the context of the fundamental differences between manufacturing methods.
Additive Manufacturing (AM) presents unprecedented opportunities to enable design freedom in parts that are unachievable via conventional manufacturing. However, AM-processed components generally lack the necessary performance metrics for widespread commercial adoption. We present a novel AM processing and design approach using removable heat sink artifacts to tailor the mechanical properties of traditionally low strength and low ductility alloys. The design approach is demonstrated with the Fe-50 at.% Co alloy, as a model material of interest for electromagnetic applications. AM-processed components exhibited unprecedented performance, with a 300 % increase in strength and an order-of-magnitude improvement in ductility relative to conventional wrought material. These results are discussed in the context of product performance, production yield, and manufacturing implications toward enabling the design and processing of high-performance, next-generation components, and alloys.
Intermetallic alloys possess exceptional soft magnetic properties, including high permeability, low coercivity, and high saturation induction, but exhibit poor mechanical properties that make them impractical to bulk process and use at ideal compositions. We used laser-based Additive Manufacturing to process traditionally brittle Fe–Co and Fe–Si alloys in bulk form without macroscopic defects and at near-ideal compositions for electromagnetic applications. The binary Fe–50Co, as a model material, demonstrated simultaneous high strength (600–700 MPa) and high ductility (35%) in tension, corresponding to a ∼300% increase in strength and an order-of-magnitude improvement in ductility relative to conventionally processed material. Atomic-scale toughening and strengthening mechanisms, based on engineered multiscale microstructures, are proposed to explain the unusual combination of mechanical properties. This work presents an instance in which metal Additive Manufacturing processes are enabling, rather than limiting, the development of higher-performance alloys.