Publications

Results 151–175 of 265

Search results

Jump to search filters

Effects of spatial realignment in stereo PIV calibration

52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014

Beresh, Steven J.; Smith, Barton L.

Simultaneous stereo PIV measurements of a round free jet were obtained from narrow and wide camera angles while a fifth camera viewed the laser sheet from 90 degrees to determine the two-component velocity field free of errors resulting from stereo calibration. Errors in mean velocities were small, but artificially reduced turbulent stresses were generated when self-calibration was not used, owing to a smearing effect that occurs when the two cameras are inadequately registered to each other. This difficulty worsened with increased laser sheet thickness. Spatial error in the stereo calibration process can artificially displace vector fields from the expected origin, which was detected through comparison to the simultaneous two-component measurement. Although this spatial offset typically is small with respect to statistical properties of a data set, it can be prominent when instantaneous snapshots of the velocity field are examined, particularly where the velocity gradient is momentarily large.

More Details

Experimental investigation of aspect-ratio effects in transonic and subsonic rectangular cavity flows

52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014

Wagner, Justin W.; Beresh, Steven J.; Casper, Katya M.; Pruett, Brian O.; Spillers, Russell W.; Henfling, John F.

Experiments were conducted at freestream Mach numbers of 0.55, 0.80, and 0.90 in open cavity flows having a length-to-depth ratio L/D of 5 and an incoming turbulent boundary having a thickness of about 0.5D. To ascertain aspect ratio effects, the length-to-width ratio L/W was varied between 1.00, 1.67, and 5.00. Two stereoscopic PIV systems were used simultaneously to characterize the flow in the plane at the spanwise center of the cavity. For each aspect ratio, trends in the mean and turbulence fields were identified, regardless of Mach number. The recirculation region had the weakest reverse velocities in the L/W = 1.67 cavity, a trend previously observed at supersonic Mach numbers. Also, like the previous supersonic experiments, the L/W = 1.00 and L/W = 5.00 mean streamwise velocities were similar. The L/W = 1.00 cavity flows had the highest turbulence intensities, whereas the two narrower cavities exhibited lower turbulence intensities of a comparable level. This is in contrast to previous supersonic experiments, which showed the lowest turbulence levels in the L/W = 1.67 cavity.

More Details

Toward transition statistics measured on a 7-Degree hypersonic cone for turbulent spot modeling

52nd Aerospace Sciences Meeting

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.

High-frequency pressure sensors were used in conjunction with a high-speed schlieren system to study the growth and breakdown of boundary-layer disturbances into turbulent spots on a 7◦ cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8. To relate the intermittent disturbances to the average characteristics of transition on the cone, the statistical distribution of these disturbances must be known. These include the boundary-layer intermittency, burst rate, and average disturbance length. Traditional low-speed methods to characterize intermittency identify only turbulent/non-turbulent regions. However at high M, instability waves become an important part of the transitional region. Algorithms to distinguish instability waves from turbulence in both the pressure and schlieren measurements are being developed and the corresponding intermittency, burst rate, and average burst length of both regions have been provisionally computed for several cases at Mach 5 and 8. Distinguishing instability waves from turbulence gives a better description of the intermittent boundary layer at high M and will allow the fluctuations associated with boundary-layer instabilities to be incorporated into transitional models.

More Details

Complex geometry effects on supersonic cavity flows

32nd AIAA Applied Aerodynamics Conference

Casper, Katya M.; Wagner, Justin W.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

The flow over aircraft bays exhibits many characteristics of cavity flows, namely resonant pressures that can create high structural loading. Most studies have represented these bays as rectangular cavities; however, this simplification neglects many features of the actual flight geometry which could affect the unsteady pressure field and resulting loading in the bay. To address this shortcoming, a complex cavity geometry was developed to incorporate more realistic aircraft-bay features including shaped inlets and internal cavity variations. A parametric study of these features at Mach 1.5, 2.0, and 2.5 was conducted to identify key differences from simple rectangular cavity flows. The frequency of the basic rectangular cavity modes could be predicted by theory; however, most complex geometries shifted these frequencies. Geometric changes that constricted the flow tended to enhance cavity modes and create higher pressure fluctuations. Other features, such as a leading edge ramp, lifted the shear layer higher with respect to the aft cavity wall and led to cavity tone suppression. Complex features that introduced spanwise non-uniformity into the shear layer also led to a reduction of cavity tones, especially at the aft end of the cavity.

More Details

Very-large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer

Physics of Fluids

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Data have been acquired from a spanwise array of fluctuating wall pressure sensors beneath a wind tunnel wall boundary layer at Mach 2, then invoking Taylor's hypothesis allows the temporal signals to be converted into a spatial map of the wall pressure field. Different frequency ranges of pressure fluctuations may be accessed by bandpass filtering the signals. In all frequency ranges, this reveals signatures of coherent structures where negative pressure events are interspersed amongst positive events, with some degree of alternation in the streamwise direction. Within lower frequency ranges, streaks of instantaneously correlated pressure fluctuations elongated in the streamwise direction exhibit a spanwise meander and show apparent merging of pressure events. Coherent length scales based on single-sensor correlations are artificially shortened by neglecting this meander and merging, but are captured correctly using the sensor array. These measurements are consistent with similar observations by other researchers in the velocity field above the wall, and explain the presence of the flat portion of the wall pressure spectrum at frequencies well below those associated with the boundary layer thickness. However, the pressure data lack the common spanwise alternation of positive and negative events found in velocity data, and conversely demonstrate a weak positive correlation in the spanwise direction at low frequencies. © 2013 AIP Publishing LLC.

More Details

Unsteady shock motion in a transonic flow over a wall-mounted hemisphere

43rd Fluid Dynamics Conference

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Particle image velocimetry measurements have been conducted for a Mach 0.8 flow over a wall-mounted hemisphere. The flow is strongly separated, with a mean recirculation length exceeding 5 δ and a mean reverse velocity of -0.2 U∞. The shock foot was found to typically sit just forward of the apex of the hemisphere and move within a range of about ±10 deg. Conditional averages based upon the shock foot location show that the separation shock is positioned upstream along the hemisphere surface when reverse velocities in the recirculation region are strong and is located downstream when they are weaker. The recirculation region appears smaller when the shock is located farther downstream. No correlation was detected of the incoming boundary layer with the shock position, nor with the wake recirculation velocities. These observations are consistent with recent studies concluding that for large strong separation regions, the dominant mechanism is the instability of the separated flow rather than a direct influence of the incoming boundary layer.

More Details

Experimental investigation of fluid-structure interactions in compressible cavity flows

43rd Fluid Dynamics Conference

Wagner, Justin W.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick H.; Spillers, Russell W.; Henfling, John F.; Mayes, R.L.

Experiments were performed to understand the complex fluid-structure interactions that occur during internal store carriage. A cylindrical store was installed in a cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 - 2.5 and the incoming turbulent boundary layer thickness was about 30-40% of the cavity depth. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers and laser Doppler vibrometry provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, as previously determined with modal hammer tests, and it exhibited a directional dependence to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, while a spanwise response was observed only occasionally. The streamwise and wall-normal responses were attributed to the known pressure gradients in these directions. Furthermore, spanwise vibrations were greater at the downstream end of the cavity, attributable to decreased levels of flow coherence near the aftwall. Collectively, the data indicate the store response to be dependent on direction of vibration and position along the length of the store.

More Details
Results 151–175 of 265
Results 151–175 of 265