Denoising 400-kHz ?Postage-Stamp PIV? using Uncertainty Quantification
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Fluids
High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave-particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106-125 and 300-355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through the curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. In addition, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4,000 frames, but for an array of only 128 × 120 pixels, giving the moniker of “postage-stamp PIV.” The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 100 kHz at which point a noise floor emerges dependent upon the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. One is the well-known inertial subrange with a slope of -5/3 at high frequencies. The other displays a -1 power-law dependence for a decade of mid-range frequencies corresponding to the energetic eddies measured by PIV, which appears to have been previously unrecognized for high-speed free shear flows.
AIAA Journal
Pulse-burst particle image velocimetry has been used to acquire time-resolved data at 37.5 kHz of the flow over a finite-width rectangular cavity at Mach 0.8. Power spectra of the particle image velocimetry data reveal four resonance modes that match the frequencies detected simultaneously using high-frequency wall pressure sensors, but whose magnitudes exhibit spatial dependence throughout the cavity. Spatiotemporal cross correlations of velocity to pressure were calculated after bandpass filtering for specific resonance frequencies. Cross-correlation magnitudes express the distribution of resonance energy, revealing local maxima and minima at the edges of the shear layer attributable to wave interference between downstream-and upstream-propagating disturbances. Turbulence intensities were calculated using a triple decomposition and are greatest in the core of the shear layer for higher modes, where resonant energies ordinarily are lower. Most of the energy for the lowest mode lies in the recirculation region and results principally from turbulence rather than resonance. Together, the velocity-pressure cross correlations and the triple-decomposition turbulence intensities explain the sources of energy identified in the spatial distributions of power spectra amplitudes.
47th AIAA Fluid Dynamics Conference, 2017
Fluid-structure interactions were studied on a store with tunable structural natural frequencies in complex cavity flow. Different leading edge geometries, doors, and internal inserts were used to generate cavity pressure fields that were more representative of an actual aircraft bay. The store loading and response was characterized using point pressure and accelerometer measurements. These data were supplemented with high-frequency pressure-sensitive paint applied to both the store and to the cavity floor to capture the three-dimensional nature of the pressure field in the complex configurations. The natural frequencies of the store were then changed to allow a systematic study of mode matching between the structural natural frequencies and the dominant cavity tone frequencies. In the complex cavities, the store responded to the cavity resonant tones not only in the streamwise and wall-normal directions, but also the spanwise direction. That spanwise response to cavity tones was not observed for previous studies in a simple rectangular cavity, because the flow across the store width in the spanwise direction was uniform. This different behavior highlights the importance of using a representative bay geometry for prediction of the structural response of a store in a flight environment.
AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
The resonance modes in Mach 0.94 turbulent flow over a cavity having a length-to-depth ratio of five were explored using time-resolved particle image velocimetry and time-resolved pressure sensitive paint. Mode-switching occurred in the velocity field simultaneous with the pressure field. The first cavity mode corresponded to large-scale motions in shear layer and in the vicinity of the recirculation region, whereas the second and third modes contained organized structures associated with shear layer vortices. Modal surface pressures exhibited streamwise periodicity generated by the interference of downstream-traveling disturbances in shear layer with upstream-traveling acoustical waves. Because of this interference, the modal velocity fields also exhibited local maxima at locations containing pressure minima and vice-versa. Modal convective (phase) velocities, based on cross-correlations of bandpass-filtered velocity fields, decreased with decreasing mode number as the modal activity resided in lower portions of the cavity. These phase velocities also exhibited streamwise periodicity caused by wave interference. The measurements demonstrate that despite the complexities inherent in compressible cavity flows, many of the most prevalent resonance dynamics can be described with simple acoustical analogies.
47th AIAA Fluid Dynamics Conference, 2017
Time-resolved particle image velocimetry (PIV) was conducted at 40 kHz using a pulse-burst laser in the supersonic wake of a wall-mounted hemisphere. Velocity fields suggest a recirculation region with two lobes in which flow moves away from the wall near centerline and recirculates back towards the hemisphere off centerline. Spatio-temporal cross-correlations and conditional ensemble averages relate the characteristic behavior of the unsteady shock motion to the flapping of the shear layer. At Mach 1.5, oblique shocks form associated with vortical structures in the shear layer and convect downstream in tandem; a weak periodicity is observed. Shock motion at Mach 2.0 appears somewhat different, wherein multiple weak disturbances propagate from shear layer turbulent structures to form an oblique shock that ripples as these vortices pass by. Bifurcated shock feet coalesce and break apart without evident periodicity. Power spectra show a preferred frequency of shear layer flapping and shock motion for Mach 1.5, but at Mach 2.0 a weak preferred frequency is found only for the oblique shock motion and not the shear layer unsteadiness.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.