Publications

Results 1–25 of 61

Search results

Jump to search filters

Summary of Externally-Driven Cavern Oil Mixing Research at SNL Including Work Performed at ASU/Notre Dame and UMass-Dartmouth

Webb, Stephen W.

Sandia National Laboratories is investigating oil mixing in underground storage caverns as part of the Strategic Petroleum Reserve (SPR) program. Oil mixing in caverns can be classified as internally - driven or externally driven. In externally - driven mixing, which is addressed in this report, processes external to the cavern and the underground environment such as the introduction and removal of fluids can cause mixing of the oil. Miscible and immiscible mixing processes are discussed. As part of this investigation, research into the fundamental mixing processes for layered caverns has been conducted by Professor H.J.S. Fernando and associates at Arizona State University (ASU) (2006 - 2009) and at the University of Notre Dame (2010 - 2012) for miscible mixing from jets. Additional research for immiscible mixing at an interface due to fluid injection was conducted at the University of Massachusetts - Dartmouth. The results of the research conducted at Sandia National Laboratories and at ASU/Notre Dame and UMass - Dartmouth are summarized in this report.

More Details

Water recovery using waste heat from coal fired power plants

Morrow, Charles W.; Dwyer, Brian P.; Webb, Stephen W.; Altman, Susan J.

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

More Details

SPR salt wall leaching experiments in lab-scale vessel : data report

Webb, Stephen W.

During cavern leaching in the Strategic Petroleum Reserve (SPR), injected raw water mixes with resident brine and eventually interacts with the cavern salt walls. This report provides a record of data acquired during a series of experiments designed to measure the leaching rate of salt walls in a labscale simulated cavern, as well as discussion of the data. These results should be of value to validate computational fluid dynamics (CFD) models used to simulate leaching applications. Three experiments were run in the transparent 89-cm (35-inch) ID diameter vessel previously used for several related projects. Diagnostics included tracking the salt wall dissolution rate using ultrasonics, an underwater camera to view pre-installed markers, and pre- and post-test weighing and measuring salt blocks that comprise the walls. In addition, profiles of the local brine/water conductivity and temperature were acquired at three locations by traversing conductivity probes to map out the mixing of injected raw water with the surrounding brine. The data are generally as expected, with stronger dissolution when the salt walls were exposed to water with lower salt saturation, and overall reasonable wall shape profiles. However, there are significant block-to-block variations, even between neighboring salt blocks, so the averaged data are considered more useful for model validation. The remedial leach tests clearly showed that less mixing and longer exposure time to unsaturated water led to higher levels of salt wall dissolution. The data for all three tests showed a dividing line between upper and lower regions, roughly above and below the fresh water injection point, with higher salt wall dissolution in all cases, and stronger (for remedial leach cases) or weaker (for standard leach configuration) concentration gradients above the dividing line.

More Details

Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling

Altman, Susan J.; Clem, Paul G.; Cook, Adam W.; Hart, William E.; Hibbs, Michael R.; Ho, Clifford K.; Jones, Howland D.; Sun, Amy C.; Webb, Stephen W.

Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

More Details

Joint physical and numerical modeling of water distribution networks

Mckenna, Sean A.; Ho, Clifford K.; Cappelle, Malynda A.; Webb, Stephen W.; O'Hern, Timothy J.

This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

More Details

Convection in underground oil caverns: The role of double diffusion

2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007

Fernando, H.J.S.; Ching, C.Y.; Zhao, Z.; Pol, S.; Webb, Stephen W.

The US Strategic Petroleum Reserve (SPR) stores oil in large underground salt caverns. This oil has compositional and thermal gradients induced by geothermal heating from both the bottom surface and side walls. Temperature layering has been recorded in SPR oil caverns, which is hypothesized to be predominantly due to double-diffusive layering that occurs when a stable compositional gradient is heated from below. Initial results of a laboratory experimental program aimed at studying dynamics of such double-diffusive layers in the context of SPR are described in this paper. Of particular interest are the thickness of converting layers, layer evolution (migration/merging) and conditions for the formation/non-formation of double-diffusive layers. Copyright © 2007 by ASME.

More Details

Training Protocols for the Detection of Explosive Vapors in Interior Spaces

Phelan, James M.; Webb, Stephen W.

Computational fluid dynamics simulations for dispersal of explosive vapors in interior spaces have been performed including details of typical ventilation systems. The interior spaces investigated include an office area, a single-family house, and a warehouse store. Explosive vapor sources are defined in the various interior spaces, and contours of the vapor concentration in the interior spaces relative to the source concentration are presented for relative concentrations down to 10-5. Training protocols for detection of explosive vapors in interior spaces should include an awareness of the time to equilibrium evident in these simulations as well as the significance of ventilation zones.3

More Details

High-fidelity simulation of the influence of local geometry on mixing in crosses in water distribution systems

Restoring Our Natural Habitat - Proceedings of the 2007 World Environmental and Water Resources Congress

Webb, Stephen W.

Network simulation models for water distribution systems typically assume the mixing at pipe intersections is complete and instantaneous. Recent data show that mixing may be incomplete at pipe junctions (pipe crosses and tees) under most conditions. In general, computational fluid dynamic (CFD) simulations agree with the experimental data, establishing confidence in the CFD approach for application to other situations. However, in the case of unequal inlet flow rates and equal outlet flow rates in a cross, the simulation results and experimental data show significantly different results. The reasons for this discrepancy are investigated, and a revised model is developed that is consistent with the experimental data. © 2007 ASCE.

More Details

The impact of natural convection on near-field TH processes in the fractured rock at Yucca Mountain

Proceedings of the 11th International High Level Radioactive Waste Management Conference, IHLRWM

Birkholzer, J.T.; Halecky, N.; Webb, Stephen W.; Peterson, P.F.; Bodvarsson, G.S.

The heat output of the radioactive waste proposed to be emplaced at Yucca Mountain will strongly affect the thermal-hydrological (TH) conditions in and near the geologic repository for thousands of years. Recent computational fluid dynamics (CFD) analysis has demonstrated that the emplacement tunnels (drifts) will act as important conduits for gas flows driven by natural convection. As a result, vapor generated from boiling/evaporation of formation water near elevated-temperature sections of the drifts may effectively be transported to cooler end sections (where no waste is emplaced), would condense there, and subsequently drain into underlying rock units. To study these processes, we have developed a new simulation method that couples existing tools for simulating TH conditions in the fractured formation with modules that approximate natural convection in heated emplacement drifts. The new method is applied to evaluate the future TH conditions at Yucca Mountain in a three-dimensional model domain comprising a representative emplacement drift and the surrounding fractured rock.

More Details

Evaluating the moisture conditions in the fractured rock at Yucca Mountain: The impact of natural convection processes in heated emplacement drifts

Vadose Zone Journal

Birkholzer, J.T.; Webb, Stephen W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

The energy output of the high-level radioactive waste to be emplaced in the proposed geologic repository at Yucca Mountain, NV, will strongly affect the thermal-hydrological (TH) conditions in the near-drift fractured rock. Heating of rock water to above-boiling conditions will induce large water saturation changes and flux perturbations close to the waste emplacement tunnels (drifts) that will last several thousand years. Understanding these perturbations is important for the performance of the repository, because they could increase, for example, the amount of formation water seeping into the open drifts and contacting waste packages. Recent computational fluid dynamics analysis has demonstrated that the drifts will act as important conduits for gas flows driven by natural convection. As a result, vapor generated from boiling of formation water near elevated-temperature sections of the drifts may effectively be transported to cooler end sections (where no waste is emplaced), where it would condense and subsequently drain into underlying rock units. Thus, natural convection processes have great potential for reducing the near-drift moisture content in heated drift sections, which has positive ramifications for repository performance. To study these processes, we have developed a new simulation method that couples existing tools for simulating TH conditions in the fractured formation with modules that approximate natural convection and evaporation conditions in heated emplacement drifts. The new method is applied to evaluate the impact of in-drift natural convection on the future TH conditions at Yucca Mountain in a three-dimensional model domain comprising a representative emplacement drift and the surrounding fractured rock. © Soil Science Society of America.

More Details

Numerical simulations of lab-scale brine-water mixing experiments

Webb, Stephen W.; Khalil, Imane K.

Laboratory-scale experiments simulating the injection of fresh water into brine in a Strategic Petroleum Reserve (SPR) cavern were performed at Sandia National Laboratories for various conditions of injection rate and small and large injection tube diameters. The computational fluid dynamic (CFD) code FLUENT was used to simulate these experiments to evaluate the predictive capability of FLUENT for brine-water mixing in an SPR cavern. The data-model comparisons show that FLUENT simulations predict the mixing plume depth reasonably well. Predictions of the near-wall brine concentrations compare very well with the experimental data. The simulated time for the mixing plume to reach the vessel wall was underpredicted for the small injection tubes but reasonable for the large injection tubes. The difference in the time to reach the wall is probably due to the three-dimensional nature of the mixing plume as it spreads out at the air-brine or oil-brine interface. The depth of the mixing plume as it spreads out along the interface was within a factor of 2 of the experimental data. The FLUENT simulation results predict the plume mixing accurately, especially the water concentration when the mixing plume reaches the wall. This parameter value is the most significant feature of the mixing process because it will determine the amount of enhanced leaching at the oil-brine interface.

More Details

Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report

Webb, Stephen W.; Phelan, James M.; Stein, Joshua S.; Sallaberry, Cedric J.

Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

More Details

Measurement and modeling of energetic material mass transfer to soil pore water : Project CP-1227 : FY04 annual technical report

Webb, Stephen W.; Stein, Joshua S.

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of a mass transfer model evaluating mass transfer processes from solid phase energetics to soil pore water based on experimental work obtained earlier in this project. This mass transfer numerical model has been incorporated into the porous media simulation code T2TNT. Next year, the energetic material mass transfer model will be developed further using additional experimental data.

More Details

Effect of Weather on Landmine Chemical Signatures for Different Climates

Proceedings of SPIE - The International Society for Optical Engineering

Webb, Stephen W.; Phelan, James M.

Buried landmines are often detected through their chemical signature in the thin air layer, or boundary layer, right above the soil surface by sensors or animals. Environmental processes play a significant role in the available chemical signature. Due to the shallow burial depth of landmines, the weather also influences the release of chemicals from the landmine, transport through the soil to the surface, and degradation processes in the soil. The effect of weather on the landmine chemical signature from a PMN landmine was evaluated with the T2TNT code for three different climates: Kabul, Afghanistan, Ft. Leonard Wood, Missouri, USA, and Napacala, Mozambique. Results for TNT gas-phase and solid-phase concentrations are presented as a function of time of the year.

More Details

In-drift natural convection analysis of the low temperature operating mode design

Proposed for publication in Nuclear Technology.

Itamura, Michael T.; Francis Jr., Nicholas D.; Webb, Stephen W.

Yucca Mountain has been designated as the nation's high-level radioactive waste repository, and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. The temperature and humidity inside the emplacement drift will affect the degradation rate of the waste packages and waste forms as well as the quantity of water available to transport dissolved radionuclides out of the waste canister. Thermal radiation and turbulent natural convection are the main modes of heat transfer inside the drift. This paper presents the result of three-dimensional computational fluid dynamics simulations of a segment of emplacement drift. The model contained the three main types of waste packages and was run at the time that the peak waste package temperatures are expected. Results show that thermal radiation is the dominant mode of heat transfer inside the drift. Natural convection affects the variation in surface temperature on the hot waste packages and can account for a large fraction of the heat transfer for the colder waste packages. The paper also presents the sensitivity of model results to uncertainties in several input parameters. The sensitivity study shows that the uncertainty in peak waste package temperatures due to in-drift parameters is <3 C.

More Details
Results 1–25 of 61
Results 1–25 of 61