Enabling Advanced Operational Analysis Through Multi-subsystem Data Integration on Trinity
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the 6th International Workshop on Programming Models and Applications for Multicores and Manycores, PMAM 2015
The Bulk Synchronous Parallel programming model is showing performance limitations at high processor counts. We propose over-decomposition of the domain, operated on as tasks, to smooth out utilization of the computing resource, in particular the node interconnect and processing cores, and hide intra- and inter-node data movement. Our approach maintains the existing coding style commonly employed in computational science and engineering applications. Although we show improved performance on existing computers, up to 131,072 processor cores, the effectiveness of this approach on expected future architectures will require the continued evolution of capabilities throughout the codesign stack. Success then will not only result in decreased time to solution, but would also make better use of the hardware capabilities and reduce power and energy requirements, while fundamentally maintaining the current code configuration strategy.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Reductions represent a common algorithmic pattern in many scientific applications. OpenMP* has always supported them on parallel and worksharing constructs. OpenMP 3.0’s tasking constructs enable new parallelization opportunities through the annotation of irregular algorithms. Unfortunately the tasking model does not easily allow the expression of concurrent reductions, which limits the general applicability of the programming model to such algorithms. In this work, we present an extension to OpenMP that supports task-parallel reductions on task and taskgroup constructs to improve productivity and programmability. We present specification of the feature and explore issues for programmers and software vendors regarding programming transparency as well as the impact on the current standard with respect to nesting, untied task support and task data dependencies. Our performance evaluation demonstrates comparable results to hand coded task reductions.
Abstract not provided.
Proceedings - IEEE 28th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2014
The metrics used for evaluating energy saving techniques for future HPC systems are critical to the correct assessment of proposed methods. Current predictions forecast that overcoming reduced system reliability, increased power requirements and energy consumption will be a major design challenge for future systems. Modern runtime energy-saving research efforts do not take into account the energy spent providing reliability. They also do not account for the increase in the probability of failure during application execution due to runtime overhead from energy saving methods. While this is very reasonable for current systems, it is insufficient for future generation systems. By taking into account the energy consumption ramifications of increased runtimes on system reliability, better energy saving techniques can be developed. This paper demonstrates how to determine the impact of runtime energy conservation methods within the context of failure-prone large scale systems. In addition, a survey of several energy savings methodologies is conducted and an analysis is performed with respect to their effectiveness in an environment in which failures occur.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].
Abstract not provided.
Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of Co-HPC 2014: 1st International Workshop on Hardware-Software Co-Design for High Performance Computing - Held in Conjunction with SC 2014: The International Conference for High Performance Computing, Networking, Storage and Analysis
Disruptive changes to computer architecture are paving the way toward extreme scale computing. The co-design strategy of collaborative research and development among computer architects, system software designers, and application teams can help to ensure that applications not only cope but thrive with these changes. In this paper, we present a novel combined co-design approach of emulation and simulation in the context of investigating future Processing in Memory (PIM) architectures. PIM enables co-location of data and computation to decrease data movement, to provide increases in memory speed and capacity compared to existing technologies and, perhaps most importantly for extreme scale, to improve energy efficiency. Our evaluation of PIM focuses on three mini-applications representing important production applications. The emulation and simulation studies examine the effects of locality-aware versus locality-oblivious data distribution and computation, and they compare PIM to conventional architectures. Both studies contribute in their own way to the overall understanding of the application-architecture interactions, and our results suggest that PIM technology shows great potential for efficient computation without negatively impacting productivity.
Proceedings of ExaMPI 2014: Exascale MPI 2014 - held in conjunction with SC 2014: The International Conference for High Performance Computing, Networking, Storage and Analysis
Advances in node-level architecture and interconnect technology needed to reach extreme scale necessitate a reevaluation of long-standing models of computation, in particular bulk synchronous processing. The end of Dennard-scaling and subsequent increases in CPU core counts each successive generation of general purpose processor has made the ability to leverage parallelism for communication an increasingly critical aspect for future extreme-scale application performance. But the use of massive multithreading in combination with MPI is an open research area, with many proposed approaches requiring code changes that can be unfeasible for important large legacy applications already written in MPI. This paper covers the design and initial evaluation of an extension of a massive multithreading runtime system supporting dynamic parallelism to interface with MPI to handle fine-grain parallel communication and communication-computation overlap. Our initial evaluation of the approach uses the ubiquitous stencil computation, in three dimensions, with the halo exchange as the driving example that has a demonstrated tie to real code bases. The preliminary results suggest that even for a very well-studied and balanced workload and message exchange pattern, co-scheduling work and communication tasks is effective at significant levels of decomposition using up to 131,072 cores. Furthermore, we demonstrate useful communication-computation overlap when handling blocking send and receive calls, and show evidence suggesting that we can decrease the burstiness of network traffic, with a corresponding decrease in the rate of stalls (congestion) seen on the host link and network.
Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS
We present a new method for mapping applications' MPI tasks to cores of a parallel computer such that communication and execution time are reduced. We consider the case of sparse node allocation within a parallel machine, where the nodes assigned to a job are not necessarily located within a contiguous block nor within close proximity to each other in the network. The goal is to assign tasks to cores so that interdependent tasks are performed by 'nearby' cores, thus lowering the distance messages must travel, the amount of congestion in the network, and the overall cost of communication. Our new method applies a geometric partitioning algorithm to both the tasks and the processors, and assigns task parts to the corresponding processor parts. We show that, for the structured finite difference mini-app Mini Ghost, our mapping method reduced execution time 34% on average on 65,536 cores of a Cray XE6. In a molecular dynamics mini-app, Mini MD, our mapping method reduced communication time by 26% on average on 6144 cores. We also compare our mapping with graph-based mappings from the LibTopoMap library and show that our mappings reduced the communication time on average by 15% in MiniGhost and 10% in MiniMD. © 2014 IEEE.
Abstract not provided.
Abstract not provided.
The asynchronous task model serves as a useful vehicle for shared memory parallel programming, particularly on multicore and manycore processors. As adoption of model among programmers has increased, support has emerged for the integration of task parallel language constructs into mainstream programming languages, e.g., C and C++. This paper examines some of the design decisions in Cilk and OpenMP concerning semantics and scheduling of asynchronous tasks with the aim of informing the efforts of committees considering language integration, as well as developers of new task parallel languages and libraries.
Abstract not provided.