Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.
We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.
This paper presents the development of a sensor to detect the oxidative and radiation induced degradation of polypropylene. Recently we have examined the use of crosslinked assemblies of nanoparticles as a chemiresistor-type sensor for the degradation products. We have developed a simple method that uses a siloxane matrix to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. These sensors were exposed with the use of a gas chromatography system to three previously identified polypropylene degradation products including 4-methyl-2-pentanone, acetone, and 2-pentanone. The limits of detection 210 ppb for 4-methy-2-pentanone, 575 ppb for 2-pentanone, and the LoD was unable to be determined for acetone due to incomplete separation from the carbon disulfide carrier.
Molecular electronic based chemical vapor sensors were assembled using noble metal nanoparticles and short conjugated phenylene ethynylene (PE) based molecules. Sacrificial capping ligands on the nanoparticles were replaced by tighter binding PE ligands. The films were assembled between pairs of electrodes by iteratively exposing the substrates to solutions of the nanoparticles and PE crosslinking bridging ligands. Some of the conjugated bridging molecules contained an electron deficient phenol to provide a simple platform for developing sensor applications. The phenol is calculated to have a significant change in its HOMO/LUMO gap in the presence of specific analytes. Judicious combination of nanoparticle size and ligand structure provides a film in which the organic bridging ligands dramatically affect film conductance. Specifically, π-conjugated ligands lower resistance more in films with smaller nanoparticles. Thus the sensing mechanism of these films is not based on the typical swelling mechanism but rather on the modulation of the molecular electronic structure of the conducting PE bridging ligands.
Nanoparticles have received much attention and have been the subject of many reviews. Nanoparticles have also been used to form super molecular structures for molecular electronic, and sensor applications. However, many limitations exist when using nanoparticles, including the ability to manipulate the particles post synthesis. Current methods to prepare nanoparticles employ functionalities like thiols, amines, phosphines, isocyanides, or a citrate as the metal capping agent. While these capping agents prevent agglomeration or precipitation of the particles, most are difficult to displace or impede packing in nanoparticle films due to coulombic repulsion. It is in this vein that we undertook the synthesis of nanoparticles that have a weakly bound capping agent that is strong enough to prevent agglomeration and in the case of the platinum particles allow for purification, but yet, easily displaced by other strongly binding ligands. The nanoparticles where synthesized according to the Brust method except stearonitrile was used instead of an aliphatic thiol. Both platinum and gold were examined in this manner. A representative procedure for the synthesis of platinum nanoparticles involved the phase transfer of chloroplatinic acid (0.37 g, 0.90 mmol) dissolved in water (30 mL) to a solution of tetraoctylammonium bromide (2.2 g, 4.0 mmol) in toluene (80 mL). After the chloroplatinic acid was transferred into the organic phase the aqueous phase was removed. Stearonitrile (0.23 g, 0.87 mmol) was added and sodium borohydride (0.38 g, 49 mmol) in water (25 mL) was added. The solution turned black almost immediately and after 15 min the organic phase was separated and passed through a 0.45 {micro}m Teflon filter. The resulting solution was concentrated and twice precipitated into ethanol ({approx}200 mL) to yield 0.11 g of black platinum nanoparticles. TGA experiments showed that the Pt particles contained 35% by mass stearonitrile. TEM images showed an average particle size of 1.3 {+-} 0.3 nm. A representative procedure for the synthesis of gold nanoparticles involved the transfer of hydrogen tetrachloroaurate (0.18 g, 0.53 mmol) dissolved in water (15 mL) to a solution of tetraoctylammonium bromide (1.1 g, 2.0 mmol) in toluene (40 mL). After the gold salt transferred into the organic phase the aqueous phase was removed. Stearonitrile (0.23 g, 0.87 mmol) was added and sodium borohydride (0.19 g, 5.0 mmol) in water (13 mL) was added. The solution turned dark red almost immediately, and after 15 min the organic phase was separated and passed through a 0.45 {micro}m Teflon filter. The resulting solution was used without purification via precipitation because attempts at precipitation with ethanol resulted in agglomeration. TEM images showed an average particle size of 5.3 {+-} 1.3 nm. The nanoparticles synthesized were also characterized using atomic force microscopy in tapping mode. The AFM images agree with the TEM images and show a relatively monodispersed collection of nanoparticles. Platinum nanoparticles were synthesized without stearonitrile to show that the particles were in fact capped with the stearonitrile and not the tetraoctylammonium bromide. In the absence of stearonitrile the nanoparticles would not redissolve in hexane or toluene after precipitation. While it is possible the tetraoctylammonium bromide helps prevent agglomeration by solvation into the capping stearonitrile ligand layer on the particles recovery of a quantitative amount of the starting tetraoctylammonium bromide was difficult and we cannot rule out that some small amount of tetraoctylammonium bromide serves in a synergistic capacity to help solubilize the isolated platinum particles. Several exchange reactions were carried out using the isolated Pt nanoparticles. The stearonitrile cap was exchanged for hexadecylmercaptan, octanethiol, and benzeneethylthiol. In a typical exchange reaction, Pt nanoparticles (10 mg) were suspended in hexane (10 mL) and the exchange ligand was added (50 {micro}L). The solutions were allowed to stir overnight and precipitated twice using ethanol. TGA experiments confirmed ligand exchange. We have also shown that these particles may be assembled in a layer by layer (LBL) fashion to build up three dimensional assemblies. As an example of this LBL assembly a substrate consisting of gold electrodes separated by 8 {micro}m on a quartz wafer was first functionalized by immersing in a solution of 1,8-octanedithiol (50 {micro}L) in hexane (10 mL) for 15 min, rinsed with hexane (10 mL), ethanol (10 mL), and dried under a stream of nitrogen. The scaffold was then placed in a toluene solution containing Au nanoparticles capped with stearonitrile (10 mg/mL) for 15 minutes. The scaffold was then rinsed with hexane (10 mL), ethanol (10 mL), and dried under a stream of nitrogen. The substrate was then immersed iteratively between the 1,8-octanedithiol and the Au nanoparticle solution 4 more times.