Vadlamani, Sri K.; Agarwal, Sapan A.; Limmer, David T.; Louie, Steven G.; Fischer, Felix R.; Yablonovitch, Eli
In tunnel field-effect transistors (tFETs), the preferred mechanism for switching occurs by alignment (on) or misalignment (off) of two energy levels or band edges. Unfortunately, energy levels are never perfectly sharp. When a quantum dot interacts with a wire, its energy is broadened. Its actual spectral shape controls the current/voltage response of such transistor switches, from on (aligned) to off (misaligned). The most common model of spectral line shape is the Lorentzian, which falls off as reciprocal energy offset squared. Unfortunately, this is too slow a turnoff, algebraically, to be useful as a transistor switch. Electronic switches generally demand an on/off ratio of at least a million. Steep exponentially falling spectral tails would be needed for rapid off-state switching. This requires a new electronic feature, not previously recognized: narrowband, heavy-effective mass, quantum wire electrical contacts, to the tunneling quantum states. These are a necessity for spectrally sharp switching.
The wide adoption of deep neural networks has been accompanied by ever-increasing energy and performance demands due to the expensive nature of training them. Numerous special-purpose architectures have been proposed to accelerate training: both digital and hybrid digital-analog using resistive RAM (ReRAM) crossbars. ReRAM-based accelerators have demonstrated the effectiveness of ReRAM crossbars at performing matrix-vector multiplication operations that are prevalent in training. However, they still suffer from inefficiency due to the use of serial reads and writes for performing the weight gradient and update step. A few works have demonstrated the possibility of performing outer products in crossbars, which can be used to realize the weight gradient and update step without the use of serial reads and writes. However, these works have been limited to low precision operations which are not sufficient for typical training workloads. Moreover, they have been confined to a limited set of training algorithms for fully-connected layers only. To address these limitations, we propose a bit-slicing technique for enhancing the precision of ReRAM-based outer products, which is substantially different from bit-slicing for matrix-vector multiplication only. We incorporate this technique into a crossbar architecture with three variants catered to different training algorithms. To evaluate our design on different types of layers in neural networks (fully-connected, convolutional, etc.) and training algorithms, we develop PANTHER, an ISA-programmable training accelerator with compiler support. Our design can also be integrated into other accelerators in the literature to enhance their efficiency. Our evaluation shows that PANTHER achieves up to 8.02×, 54.21×, and 103× energy reductions as well as 7.16×, 4.02×, and 16× execution time reductions compared to digital accelerators, ReRAM-based accelerators, and GPUs, respectively.
Non-volatile memory arrays can deploy pre-trained neural network models for edge inference. However, these systems are affected by device-level noise and retention issues. Here, we examine damage caused by these effects, introduce a mitigation strategy, and demonstrate its use in fabricated array of SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) devices. On MNIST, fashion-MNIST, and CIFAR-10 tasks, our approach increases resilience to synaptic noise and drift. We also show strong performance can be realized with ADCs of 5-8 bits precision.
An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box machine learning-based algorithms can predict these properties with some success, they do not directly provide the basis on which these predictions are made, therefore complicating the a priori design of novel materials exhibiting a desired property value. In this work we demonstrate how feature importance, as identified by a gradient boosting tree regressor, uncovers the strong dependence of the metal hydride equilibrium H2 pressure on a volume-based descriptor that can be computed from just the elemental composition of the intermetallic alloy. Elucidation of this simple structure-property relationship is valid across a range of compositions, metal substitutions, and structural classes exhibited by intermetallic hydrides. This permits rational targeting of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by their descriptor values, and we predict a known intermetallic to form a low-stability hydride (as confirmed by density functional theory calculations) that has not yet been experimentally investigated.
Neuromorphic computers based on analogue neural networks aim to substantially lower computing power by reducing the need to shuttle data between memory and logic units. Artificial synapses containing nonvolatile analogue conductance states enable direct computation using memory elements; however, most nonvolatile analogue memories require high write voltages and large current densities and are accompanied by nonlinear and unpredictable weight updates. Here, we develop an inorganic redox transistor based on electrochemical lithium-ion insertion into LiXTiO2 that displays linear weight updates at both low current densities and low write voltages. The write voltage, as low as 200 mV at room temperature, is achieved by minimizing the open-circuit voltage and using a low-voltage diffusive memristor selector. We further show that the LiXTiO2 redox transistor can achieve an extremely sharp transistor subthreshold slope of just 40 mV/decade when operating in an electrochemically driven phase transformation regime.