Publications

Results 76–100 of 109

Search results

Jump to search filters

Novel ground test applications of high-frequency pressure sensitive paint

AIAA Aviation 2019 Forum

Casper, Katya M.; Spitzer, Seth M.; Glenn, Nathan; Schultz, Ryan S.

Two novel and challenging applications of high-frequency pressure-sensitive paint were attempted for ground testing at Sandia National Labs. Blast tube testing, typically used to assess the response of a system to an incident blast wave, was the first application. The paint was tested to show feasibility for supplementing traditional pressure instrumentation in the harsh outdoor environment. The primary challenge was the background illumination from sunlight and time-varying light contamination from the associated explosion. Optimal results were obtained in pre-dawn hours when sunlight contamination was absent; additional corrections must be made for the intensity of the explosive illumination. A separate application of the paint for acoustic testing was also explored to provide the spatial distribution of loading on systems that do not contain pressure instrumentation. In that case, the challenge was the extremely low level of pressure variations that the paint must resolve (120 dB). Initial testing indicated the paint technique merits further development for a larger scale reverberant chamber test with higher loading levels near 140 dB.

More Details

Using a Dynamic Substructuring Approach to Model the Effects of Acoustic Damping in Coupled Acoustic-Structure Systems

Journal of Vibration and Acoustics

Schultz, Ryan S.

Acoustic-structure coupling can substantially alter the frequency response of air-filled structures. Coupling effects typically manifest as two resonance peaks at frequencies above and below the resonant frequency of the uncoupled structural system. In this study, a dynamic substrucuring approach is applied to a simple acoustic-structure system to expose how the system response depends on the damping in the acoustic subsystem. Parametric studies show that as acoustic damping is increased, the frequencies and amplitudes of the coupled resonances in the structural response undergo a sequence of changes. For low levels of acoustic damping, the two coupled resonances have amplitudes approximating the corresponding in vacuo resonance. As acoustic damping is increased, resonant amplitudes decrease dramatically while the frequency separation between the resonances tends to increase slightly. When acoustic damping is increased even further, the separation of the resonant frequencies decreases below their initial separation. Finally, at some critical value of acoustic damping, one of the resonances abruptly disappears, leaving just a single resonance. Counterintuitively, increasing acoustic damping beyond this point tends to increase the amplitude of the remaining resonance peak. Finally, these results have implications for analysts and experimentalists attempting to understand, mitigate, or otherwise compensate for the confounding effects of acoustic-structure coupling in fluid-filled test structures.

More Details

Acoustoelasticity Testing: Changing Boundary Conditions and Damping

Schultz, Ryan S.

A series of modal tests were performed on an acoustoelastic system to explore how changes to the air and structural components affect the acoustoelastic coupling. This work is a continuation of previous experimental and analytical efforts. Here, the test method and perturbations were much more controlled than in previous tests, resulting in more refined data. Outputs of interest here are the coupled system modes as well as the resulting frequency response for various perturbations of the coupled system. Perturbations explored in this work include mass loading the structure, changing the air damping, and changing the air boundary conditions. Results of these tests indicate that simply adding damping to the air component, using foam or other absorptive material, is not sufficient to fully decouple the system. Rather, it is preferred to employ a change to the air boundary conditions, in the form of volume inclusions or scatterers, to prevent formation of the acoustic coupled mode.

More Details

Modeling and measurement of a tunable acoustoelastic system

Sound and Vibration

Fowler, Deborah; Lopp, Garrett; Bansal, Dhiraj; Schultz, Ryan S.; Brake, Matthew; Shepherd, Micah

Acoustoelastic coupling occurs when a hollow structure's in-vacuo mode aligns with an acoustic mode of the internal cavity. The impact of this coupling on the total dynamic response of the structure can be quite severe depending on the similarity of the modal frequencies and shapes. Typically, acoustoelastic coupling is not a design feature, but rather an unintended result that must be remedied as modal tests of structures are often used to correlate or validate finite element models of the uncoupled structure. Here, however, a test structure is intentionally designed such that multiple structural and acoustic modes are well-aligned, resulting in a coupled system that allows for an experimental investigation. First, coupling in the system is identified using a measure termed the magnification factor. Next, the structural-acoustic interaction is measured. Modifications to the system demonstrate the dependency of the coupling on changes in the mode shape and frequency proximity. This includes an investigation of several practical techniques used to decouple the system by altering the internal acoustic cavity, as well as the structure itself. These results show that acoustic absorption material effectively decoupled the structure while structural modifications, in their current form, proved unsuccessful. Readily available acoustic absorptive material was effective in reducing the coupled effects while presumably adding negligible mass or stiffness to the structure.

More Details

Nonlinear finite element model updating, part II: Implementation and simulation

Conference Proceedings of the Society for Experimental Mechanics Series

Owens, Brian C.; Schultz, Ryan S.; Pacini, Benjamin R.; Mayes, R.L.

Linear structural dynamic models are often used to support system design and qualification. Overall, linear models provide an efficient means for conducting design studies and augmenting test data by recovering un-instrumented or unmeasurable quantities (e.g. stress). Nevertheless, the use of linear models often adds significant conservatism in design and qualification programs by failing to capture critical mechanisms for energy dissipation. Unfortunately, the use of explicit nonlinear models can require unacceptably large efforts in model development and experimental characterization to account for common nonlinearities such as frictional interfaces, macro-slip, and other complex material behavior. The computational requirements are also greater by orders of magnitude. Conversely, modal models are much more computationally efficient and experimentally have shown the ability to capture typical structural nonlinearity. Thus, this work will seek to use modal nonlinear identification techniques to improve the predictive capability of a finite element structural dynamics model. Part I of this paper discussed experimental aspects of this work. Part II will consider use of nonlinear modal models in finite element modeling. First, the basic theory and numerical implementation is discussed. Next, the linear structural dynamic model of a configuration of interest is presented and model updating procedures are discussed. Finally, verification exercises are presented for a high level excitation using test data and simulated predictions from a structural dynamics model augmented with models obtained in nonlinear identification efforts.

More Details

Nonlinear finite element model updating, part I: Experimental techniques and nonlinear modal model parameter extraction

Conference Proceedings of the Society for Experimental Mechanics Series

Pacini, Benjamin R.; Mayes, R.L.; Owens, Brian C.; Schultz, Ryan S.

Linear structural dynamic models are often used to support system design and qualification. Overall, linear models provide an efficient means for conducting design studies and augmenting test data by recovering un-instrumented or unmeasurable quantities (e.g. stress). Nevertheless, the use of linear models often adds significant conservatism in design and qualification programs by failing to capture critical mechanisms for energy dissipation. Unfortunately, the use of explicit nonlinear models can require unacceptably large efforts in model development and experimental characterization to account for common nonlinearities such as frictional interfaces, macro-slip, and other complex material behavior. The computational requirements are also greater by orders of magnitude. Conversely, modal models are much more computationally efficient and experimentally have shown the ability to capture typical structural nonlinearity. Thus, this work will seek to use modal nonlinear identification techniques to improve the predictive capability of a finite element structural dynamics model. Part I of this paper discusses the experimental aspects of this work. Linear natural frequencies, damping values, and mode shapes are extracted from low excitation level testing. Subsequently, the structure is excited with high level user-defined shaker inputs. The corresponding response data are modally filtered and fit with nonlinear elements to create the nonlinear pseudo-modal model. This is then used to simulate the measured response from a high level excitation experiment which utilized a different type of input. The nonlinear model is then employed in a reduced order, generalized structural dynamics model as discussed in Part II.

More Details

Mitigation of structural-acoustic mode coupling in a modal test of a hollow structure

Conference Proceedings of the Society for Experimental Mechanics Series

Schultz, Ryan S.; Pacini, Benjamin R.

A phenomenon in which structural and internal acoustic modes couple is occasionally observed during modal testing. If the structural and acoustic modes are compatible (similar frequencies and shapes), the structural mode can split into two separate modes with the same shape but different frequencies; where one mode is expected, two are observed in the structural response. For a modal test that will inform updates to an analytical model (e.g. finite element), the test and model conditions should closely match. This implies that a system exhibiting strongly coupled structural-acoustic modes in test should have a corresponding analytical model that captures that coupling. However, developing and running a coupled structural-acoustic finite element model can be challenging and may not be necessary for the end use of the model. In this scenario, it may be advantageous to alter the test conditions to match the in-vacuo structural model by de-coupling the structural and acoustic modes. Here, acoustic absorption material was used to decouple the modes and attempt to measure the in-vacuo structural response. It was found that the split peak could be eliminated by applying sufficient acoustic absorbing material to the air cavity. However, it was also observed that the amount of acoustic absorbing material had an effect on the apparent structural damping of a second, separate mode. Analytical and numerical methods were used to demonstrate how coupled systems interact with changes to damping and mode frequency proximity while drawing parallels to the phenomena observed during modal tests.

More Details
Results 76–100 of 109
Results 76–100 of 109