Publications

Results 51–75 of 119

Search results

Jump to search filters

Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

Algal Research

Wu, Weihua W.; Davis, Ryan W.; Tran-Gyamfi, Mary B.

The feasibility of converting algal protein to mixed alcohols has recently been demonstrated with an engineered E. coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening, more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the four highest activity YqhD mutants were selected for combination with two IlvC mutants, both accepting NADH as a redox cofactor, for modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E. coli strain, subtype AY3, with increased fusel alcohol yield of ~ 60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.

More Details

Hybrid promoter engineering towards the construction of self-inducible systems for microbial lignin valorization

Nucleic Acids Research

Varman, Arul M.; Liu, Fang L.; Davis, Ryan W.; Lin, Yone K.; Singh, Seema S.; Follenfant, Rhiannon

Lignin valorization is viewed as a key for the development of a cost effective lignocellulosic biorefinery, and synthetic biology tools would play an important role in the construction of an efficient chassis towards this goal. In this study, we have employed a hybrid promoter engineering approach for the construction of higher strength phenolics inducible promoters.

More Details

Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae

PLoS ONE

Wu, Weihua W.; Davis, Ryan W.; Wu, Benjamin C.; Gladden, John M.

Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs) derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

More Details

MOF-Based Catalysts for Selective Hydrogenolysis of Carbon-Oxygen Ether Bonds

ACS Catalysis

Allendorf, Mark D.; Stavila, Vitalie S.; Ramakrishnan, Parthasarathi R.; Davis, Ryan W.; Sale, Kenneth L.; Simmons, Blake S.; Singh, Seema S.

We demonstrate that metal-organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Repeated cycling induces no loss of activity, making this a promising route for mild aryl-ether bond scission.

More Details

One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

Algal Research

Davis, Ryan W.

In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteins as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).

More Details

Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source

Bioresource Technology

Davis, Ryan W.; Siccardi, Anthony J.; Huysman, Nathan D.; Wyatt, Nicholas B.; Hewson, John C.; Lane, Todd L.

The suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20±4gAFDW/m2/day). Analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.

More Details
Results 51–75 of 119
Results 51–75 of 119