Publications

Results 26–50 of 74

Search results

Jump to search filters

Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars

Warne, Larry K.; Jorgenson, Roy E.

This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

More Details

Electromagnetic field limits set by the V-Curve

Warne, Larry K.; Jorgenson, Roy E.

When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

More Details

High-voltage atmospheric breakdown across intervening rutile dielectrics

Simpson, Sean S.; Coats, Rebecca S.; Hjalmarson, Harold P.; Jorgenson, Roy E.; Pasik, Michael F.

This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

More Details

Electrical coupling of lightning through a hole in a metal barrier

IEEE Transactions on Plasma Science

Warne, Larry K.; Jorgenson, Roy E.; Martinez, Leonard E.; Jojola, John M.; Coats, Rebecca S.; Merewether, Kimball O.

This paper discusses the penetration and coupling of a lightning return stroke through a hole in a metal barrier to a conductor located behind the hole. Indirect field coupling (electric and magnetic) and direct discharges are considered both analytically and experimentally. Although here we consider the hole to be preexisting, one application of this work is lightning return stroke coupling through holes burned in metallic barriers by the continuing current component of lightning. The goal is to develop an understanding of the mechanisms and expected penetrant levels in lightning burnthrough. © 2011 IEEE.

More Details

Protection characteristics of a Faraday cage compromised by lightning burnthrough

Warne, Larry K.; Martinez, Leonard E.; Jorgenson, Roy E.; Merewether, Kimball O.; Jojola, John M.; Coats, Rebecca S.; Bystrom, Edward B.

A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).

More Details

Dielectric surface effects on transient ARCS in lightning arrester devices

Digest of Technical Papers-IEEE International Pulsed Power Conference

Hjalmarson, Harold P.; Pineda, A.C.; Jorgenson, Roy E.; Pasik, Michael F.

Continuum calculations are used to understand the avalanche growth of electrical current in a composite insulator consisting of an air gap and a solid dielectic. The results show that trapped charge can quench the electrical breakdown. The results are compared with phenomena found in dielectric barrier discharge (DBD) devices. © 2011 IEEE.

More Details

Time harmonic two-dimensional cavity scar statistics: Convex mirrors and bowtie

Electromagnetics

Warne, Larry K.; Jorgenson, Roy E.; Kotulski, J.D.; Lee, K.S.H.

This article examines the localization of time harmonic high-frequency modal fields in two-dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This article examines the enhancements for these unstable orbits when the opposing mirrors are convex, constructing the high-frequency field in the scar region using elliptic cylinder coordinates in combination with a random reflection phase from the outer chaotic region. The enhancements when the cavity is symmetric as well as asymmetric about the orbit are examined. © Taylor & Francis Group, LLC.

More Details

Electromagnetic coupling between transmitters and electro-explosive devices located within an enclosure

Jorgenson, Roy E.; Warne, Larry K.; Coats, Rebecca S.

This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.

More Details

Surface interactions involved in flashover with high density electronegative gases

Warne, Larry K.; Jorgenson, Roy E.; Lehr, J.M.

This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

More Details

Streamer initiation in volume and surface discharges in atmospheric gases

Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC

Lehr, J.M.; Warne, Larry K.; Jorgenson, Roy E.; Wallace, Z.R.; Hodge, K.C.; Caldwell, Michele C.

It is generally acknowledged that once a highly conductive channel is established between two charged and conducting materials, electrical breakdown is well established and difficult to interrupt. An understanding of the initiation mechanism for electrical breakdown is crucial for devising mitigating methods to avoid catastrophic failures. Both volumetric and surface discharges are of interest. An effort is underway where experiments and theory are being simultaneously developed. The experiment consists of an impedance matched discharge chamber capable of investigating various gases and pressures to ten atmospheres. In addition to current and voltage measurements, a high dynamic range streak camera records streamer velocities. The streamer velocities are particularly valuable for comparison with theory. A streamer model is being developed which includes photo-ionization and particle interactions with an insulating surface. The combined theoretical and experimental effort is aimed at detailed comparisons of streamer development as well as a quantitative understanding of how streamers interact with dielectric surfaces and the resulting effects on breakdown voltage. © 2008 IEEE.

More Details
Results 26–50 of 74
Results 26–50 of 74