Publications

Results 51–55 of 55

Search results

Jump to search filters

Preliminary study on hydrogeology in tectonically active areas

Arnold, Bill W.; Lappin, Allen R.; Gettemy, Glen L.; Meier, Diane K.; Lee, Moo Y.; Jensen, Richard P.

This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

More Details

Modeling Explosive/Rock Interaction During Presplitting Using ALE Computational Methods

Jensen, Richard P.

Arbitrary Lagrangian Eulerian (ALE) computational techniques allow treatment of gases, liq- uids, and solids in the same simulation. ALE methods include the ability to treat shockwaves in gases, liquids, and solids and the interaction of shockwaves with each other and with media from one of the other categories. ALE codes can also treat explosive detonation and the expansion of the explosive gases and their interaction with air and solids. ALEGRA is a 3-DALE code that has been developed at Sandia National Laboratories over the past few years. ALEGRA has been applied to a 2-D simulation of presplitting using decoupled explosives in rock blasting with very interesting results. The detonation of the explosive at the bottom of the hole sends a shock wave up the borehole driven by the explosive gas expanding into air. The explosive gas compresses the air against the stemming column where it rebounds and recompresses at the bottom of the borehole. This type of ringing takes several cycles to damp out. The explosively induced expansion of the borehole is also treated by ALEGRA as well as the shock wave imparted to the rock. The presentation of this paper will include sev- eral computer animations to aid in understanding this complex phenomenon.

More Details
Results 51–55 of 55
Results 51–55 of 55