Optimization of a CONFIDANTE System (CONfirmation using a Fast-neutron Imaging Detector with Anti-image Null-positive Time Encoding)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Through a series of measurements with a high purity germanium detector, we have established that the past presence of neutron emitting material can be detected by the decay of activation products in aluminum containers, tungsten shielding, and concrete floors even several days after last exposure. The time since last exposure can also be estimated by the gamma-ray detection rate. These findings may lead to interesting new CONOPS in the detection of illicit SNM or the verification of the absence (or presence) of SNM containing objects in facilities and/or transit even after the material has been removed.
Abstract not provided.
We present the relative timing and pulse-shape discrimination performance of a H1949-50 photomultiplier tube to SensL ArrayX-B0B6_64S coupled to a SensL ArrayC-60035-64P- PCB Silicon Photomultiplier array. The goal of this work is to enable the replacement of photomultiplier readout of scintillators with Silicon Photomultiplier devices, which are more robust and have higher particle detection efficiency. The report quantifies the degradation of these performance parameters using commercial off the shelf summing circuits, and motivates the development of an improved summing circuit: the pulse-shape descrimination figure-of-merit drops from 1.7 at 500 keVee to 1.4, and the timing resolution (σ) is 288 ps for the photomultiplier readout and approximately 1 ns for the Silicon Photomultiplier readout. A degradation of this size will have a large negative impact on any device that relies on timing coincidence or pulse-shape discrimination to detect neutron interactions, such as neutron kinematic imaging or multiplicity measurements.
We present single-sided 3D image reconstruction and neutron spectrum of non-nuclear material interrogated with a deuterium-tritium neutron generator. The results presented here are a proof-of-principle of an existing technique previously used for nuclear material, applied to non-nuclear material. While we do see excess signatures over background, they do not have the expected form and are currently un-identified.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ∼1mCi252Cf radiological source at 100m standoff with 90% detection efficiency and 10% false positives against background in 12min. This same detection efficiency is met at 15s for a 40m standoff, and 1.2s for a 20m standoff.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.