A novel dual neutron gamma imager
Abstract not provided.
Abstract not provided.
The Neutron Scatter Camera (NSC) can image fission sources and determine their energy spectra at distances of tens of meters and through significant thicknesses of intervening materials in relatively short times [1]. We recently completed a 32 element scatter camera and will present recent advances made with this instrument. A novel capability for the scatter camera is dual mode imaging. In normal neutron imaging mode we identify and image neutron events using pulse shape discrimination (PSD) and time of flight in liquid scintillator. Similarly gamma rays are identified from Compton scatter in the front and rear planes for our segmented detector. Rather than reject these events, we show it is possible to construct a gamma-ray image by running the analysis in a 'Compton mode'. Instead of calculating the scattering angle by the kinematics of elastic scatters as is appropriate for neutron events, it can be found by the kinematics of Compton scatters. Our scatter camera has not been optimized as a Compton gamma-ray imager but is found to work reasonably. We studied imaging performance using a Cs137 source. We find that we are able to image the gamma source with reasonable fidelity. We are able to determine gamma energy after some reasonable assumptions. We will detail the various algorithms we have developed for gamma image reconstruction. We will outline areas for improvement, include additional results and compare neutron and gamma mode imaging.
IEEE Nuclear Science Symposium Conference Record
Coded aperture neutron imaging detectors have the potential to be a powerful tool for the detection of special nuclear material at long range or under heavy shielding, using the signature of fast neutrons from spontaneous fission. We are building a prototype system using liquid scintillator cells, measuring 20'' x 2.5'' x 2.5'' each, in a reconfigurable arrangement. A cross-calibration of the observed detector data with the output of Monte Carlo simulation can both improve the sensitivity of the detector to fast neutron sources and increase the simulation accuracy, allowing the study of next-generation detector designs. Here we describe the tools and procedures developed to calibrate and simulate the detector response, including energy scale and resolution, interaction position, and gamma-neutron separation using pulse shape discrimination. Detector data and simulation are in good agreement for a test configuration. ©2009 IEEE.
Abstract not provided.
Direct measurements of cosmic-ray neutron intensity were recorded with a neutron scatter camera developed at SNL. The instrument used in this work is a prototype originally designed for nuclear non-proliferation work, but in this project it was used to characterize the response of ambient neutrons in the 0.5-10 MeV range to water located on or above the land surface. Ambient neutron intensity near the land surface responds strongly to the presence of water, suggesting the possibility of an indirect method for monitoring soil water content, snow water equivalent depth, or canopy intercepted water. For environmental measurements the major advantage of measuring neutrons with the scatter camera is the limited (60{sup o}) field of view that can be obtained, which allows observations to be conducted at a previously unattainable spatial scales. This work is intended to provide new measurements of directional fluxes which can be used in the design of new instruments for passively and noninvasively observing land-surface water. Through measurements and neutron transport modeling we have demonstrated that such a technique is feasible.
Abstract not provided.
We describe the design, calibration, and measurements made with the neutron scatter camera. Neutron scatter camera design allows for the determination of the direction and energy of incident neutrons by measuring the position, recoil energy, and time-of-flight (TOF) between elastic scatters in two liquid scintillator cells. The detector response and sensitive energy range (0.5-10 MeV) has been determined by detailed calibrations using a {sup 252}Cf neutron source over its field of view (FOV). We present results from several recent deployments. In a laboratory study we detected a {sup 252}Cf neutron source at a stand off distance of 30 m. A hidden neutron source was detected inside a large ocean tanker. We measured the integral flux density, differential energy distribution and angular distribution of cosmic neutron background in the fission energy range 0.5-10 MeV at Alameda, CA (sea level), Livermore, CA (174 m), Albuquerque, NM (1615 m) and Fenton Hill, NM (2630 m). The neutron backgrounds are relatively low, and non-isotropic. The camera has been ruggedized, deployed to various locations and has performed various measurements successfully. Our results show fast neutron imaging could be a useful tool for the detection of special nuclear material (SNM).
Standoff neutron detection technology has advanced in recent years, primarily for counterterrorism applications. Sandia National Laboratories has developed the Neutron Scatter Camera -- a fast neutron imaging system using liquid scintillator with potential applications in long range neutron detection. This talk will explore the pros, cons and practical uses of the Neutron Scatter Camera versus more traditional neutron detectors such as He-3 proportional counters. Several applications for neutron detection and imaging will be explored. We will perform predictive calculations of the response of the Neutron Scatter Camera and traditional He-3 detectors. The applications range from counterterrorism to arms control to safeguards. We will discuss future evolution of the scatter camera to enhance long range detection.
Abstract not provided.
IEEE Nuclear Science Symposium Conference Record
When searching for SNM simply designing a better detector to optimize the signal S from the source is not enough. It is important to know the background B to maximize S/N, where N is the noise in B. Cosmic rays are a dominant source of neutron background. It is therefore important to know their flux, angular and energy distribution. Over the last 50 years work has been done to study cosmic ray neutrons and their variation. The full hemispherical neutron flux is usually quoted at a certain altitude (e.g. Altitude = 0 meters above sea level, pressure = 1033 g/cm2) and geomagnetic rigidity (e.g. GMR = 1.2GV). Neutron fluxes at other locations are scaled from the sea level data using a well determined prescription. However, there is a lack in knowledge of the angular dependence of the neutron flux at sea level. The angular dependence is important for two reasons; first many detectors have an efficiency that changes with the direction of the incident neutron. Second none of the measurements to date have determined how the flux changes with angle, their data must be modeled to estimate the full hemispherical flux. In this paper we present the cosmic neutron background flux measured by a neutron scatter camera in the energy range 0.2-10MeV. Our measurements are in agreement with the best fit to past data. We present for the 1st time the neutron zenith angle dependence at fission energies which is observed to be a function of the form cos 2.7⊖. ©2007 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.