Publications

Results 101–121 of 121

Search results

Jump to search filters

Review of the technical bases of 40 CFR Part 190

McMahon, Kevin A.; Bixler, Nathan E.; Kelly, John E.; Siegel, Malcolm D.; Weiner, Ruth F.

The dose limits for emissions from the nuclear fuel cycle were established by the Environmental Protection Agency in 40 CFR Part 190 in 1977. These limits were based on assumptions regarding the growth of nuclear power and the technical capabilities of decontamination systems as well as the then-current knowledge of atmospheric dispersion and the biological effects of ionizing radiation. In the more than thirty years since the adoption of the limits, much has changed with respect to the scale of nuclear energy deployment in the United States and the scientific knowledge associated with modeling health effects from radioactivity release. Sandia National Laboratories conducted a study to examine and understand the methodologies and technical bases of 40 CFR 190 and also to determine if the conclusions of the earlier work would be different today given the current projected growth of nuclear power and the advances in scientific understanding. This report documents the results of that work.

More Details

Plume rise calculations using a control volume approach and the damped spring oscillator analogy

2008 Proceedings of the ASME Summer Heat Transfer Conference, HT 2008

Brown, Alexander L.; Bixler, Nathan E.

The PUFF code was originally written and designed to calculate the rise of a large detonation or deflagration non-continuous plume (puff) in the atmosphere. It is based on a buoyant spherical control volume approximation. The theory for the model is updated and presented. The model has been observed to result in what are believed to be unrealistic plume elevation oscillations as the plume approaches the terminal elevation. Recognizing a similarity between the equations for a classical damped spring oscillator and the present model, the plume rise model can be analyzed by evaluating equivalent spring constants and damping functions. Such an analysis suggests a buoyant plume in the atmosphere is significantly under-damped, explaining the occurrence of the oscillations in the model. Based on lessons learned from the analogy evaluations and guided by comparisons with early plume rise data, a set of assumptions is proposed to address the excessive oscillations found in the predicted plume near the terminal elevation, and to improve the robustness of the predictions. This is done while retaining the basic context of the present model formulation. The propriety of the present formulation is evaluated. The revised model fits the vast majority of the existing data to +/- 25%, which is considered reasonable given the present model form. Further validation efforts would be advisable, but are impeded by a lack of quality existing datasets. Copyright © 2008 by ASME.

More Details

Evaluation of alternative emergency strategies for nuclear power plants using the winmaccs code

Proceedings of the 8th International Conference on Probabilistic Safety Assessment and Management, PSAM 2006

Bixler, Nathan E.; Dotson, Lori J.; Jones, Joseph A.; Sullivan, Randolph L.

The objectives of this study are to identify and evaluate alternative protective action recommendations (PARs) that could reduce dose to the public during a radiological emergency and to determine whether improvements or changes to the federal guidance would be beneficial. The emergency response strategies considered in this study are the following: (1) standard radial evacuation; (2) shelter-in-place followed by radial evacuation; (3) shelter-in-place followed by lateral evacuation; (4) preferential sheltering followed by radial evacuation; and (5) preferential sheltering followed by lateral evacuation. Radial evacuation is directly away from the plant; lateral evacuation is azimuthally (around the compass) away from the direction of the wind. Shelter-in-place is a protective action strategy in which individuals remain in their residence, place of work, or other facility at the time that a general warning is given. Preferential sheltering involves moving individuals to nearby, large buildings, e.g., high-school gymnasiums or courthouses, that afford greater protection than personal residences. This study shows that there are benefits to sheltering if followed by lateral evacuation. However, if the lateral evacuation strategy cannot be implemented, then early radial evacuation is often preferable. The most appropriate PAR depends on the evacuation time estimate (ETE) and, therefore, it is desirable to reduce the uncertainty associated with the ETE. Nuclear Regulatory Commission (NRC) guidance to commercial power plants currently allows for sheltering and/or evacuation as an emergency response to a serious nuclear accident. Frequently, however, licensees and states default to evacuation strategies and do not consider sheltering. Here we evaluate several alternative strategies to determine if standard radial evacuation is best or if other options could reduce the overall risk to the public. We consider two source terms based on the NUREG-1150 study. These involve a rapid release of radioactive material into the atmosphere and a more gradual release. Two variations in timing have also been investigated, but are not reported here. The evaluation was performed for a generic site, which uses a uniform population distribution and typical Midwest meteorological data (Moline, IL). Additional parameters that are varied in the study are the ETE (4-, 6-, 8-, and 10-hour ETEs are considered) and the duration of sheltering (2-, 4-, and 8-hr sheltering periods are considered). Additional sensitivity studies were performed to investigate nonuniform evacuation speed caused by traffic congestion, the time needed to reach a preferential shelter, and the effect of adverse weather conditions as opposed to favorable weather conditions. Adverse weather conditions are those for which precipitation occurs before the leading edge of the plume exits the 10-mile emergency planning zone (EPZ). Ultimately, emergency response strategies are ranked by their potential to reduce adverse health effects for residents within the EPZ. © 2006 by ASME.

More Details

Methodology assessment and recommendations for the Mars science laboratory launch safety analysis

Bessette, Gregory B.; Lipinski, Ronald J.; Bixler, Nathan E.; Hewson, John C.; Robinson, David G.; Potter, Donald L.; Atcitty, Christopher B.; Dodson, Brian W.; Maclean, Heather J.; Sturgis, Beverly R.

The Department of Energy has assigned to Sandia National Laboratories the responsibility of producing a Safety Analysis Report (SAR) for the plutonium-dioxide fueled Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) proposed to be used in the Mars Science Laboratory (MSL) mission. The National Aeronautic and Space Administration (NASA) is anticipating a launch in fall of 2009, and the SAR will play a critical role in the launch approval process. As in past safety evaluations of MMRTG missions, a wide range of potential accident conditions differing widely in probability and seventy must be considered, and the resulting risk to the public will be presented in the form of probability distribution functions of health effects in terms of latent cancer fatalities. The basic descriptions of accident cases will be provided by NASA in the MSL SAR Databook for the mission, and on the basis of these descriptions, Sandia will apply a variety of sophisticated computational simulation tools to evaluate the potential release of plutonium dioxide, its transport to human populations, and the consequent health effects. The first step in carrying out this project is to evaluate the existing computational analysis tools (computer codes) for suitability to the analysis and, when appropriate, to identify areas where modifications or improvements are warranted. The overall calculation of health risks can be divided into three levels of analysis. Level A involves detailed simulations of the interactions of the MMRTG or its components with the broad range of insults (e.g., shrapnel, blast waves, fires) posed by the various accident environments. There are a number of candidate codes for this level; they are typically high resolution computational simulation tools that capture details of each type of interaction and that can predict damage and plutonium dioxide release for a range of choices of controlling parameters. Level B utilizes these detailed results to study many thousands of possible event sequences and to build up a statistical representation of the releases for each accident case. A code to carry out this process will have to be developed or adapted from previous MMRTG missions. Finally, Level C translates the release (or ''source term'') information from Level B into public risk by applying models for atmospheric transport and the health consequences of exposure to the released plutonium dioxide. A number of candidate codes for this level of analysis are available. This report surveys the range of available codes and tools for each of these levels and makes recommendations for which choices are best for the MSL mission. It also identities areas where improvements to the codes are needed. In some cases a second tier of codes may be identified to provide supporting or clarifying insight about particular issues. The main focus of the methodology assessment is to identify a suite of computational tools that can produce a high quality SAR that can be successfully reviewed by external bodies (such as the Interagency Nuclear Safety Review Panel) on the schedule established by NASA and DOE.

More Details

Recent plant studies using Victoria 2.0

Bixler, Nathan E.; Gasser, Ronald D.

VICTORIA 2.0 is a mechanistic computer code designed to analyze fission product behavior within the reactor coolant system (RCS) during a severe nuclear reactor accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS and secondary circuits. These predictions account for the chemical and aerosol processes that affect radionuclide behavior. VICTORIA 2.0 was released in early 1999; a new version VICTORIA 2.1, is now under development. The largest improvements in VICTORIA 2.1 are connected with the thermochemical database, which is being revised and expanded following the recommendations of a peer review. Three risk-significant severe accident sequences have recently been investigated using the VICTORIA 2.0 code. The focus here is on how various chemistry options affect the predictions. Additionally, the VICTORIA predictions are compared with ones made using the MELCOR code. The three sequences are a station blackout in a GE BWR and steam generator tube rupture (SGTR) and pump-seal LOCA sequences in a 3-loop Westinghouse PWR. These sequences cover a range of system pressures, from fully depressurized to full system pressure. The chief results of this study are the fission product fractions that are retained in the core, RCS, secondary, and containment and the fractions that are released into the environment.

More Details

RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

Bixler, Nathan E.

This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in the quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.

More Details

Status of VICTORIA: NRC peer review and recent code applications

Bixler, Nathan E.

VICTORIA is a mechanistic computer code designed to analyze fission product behavior within a nuclear reactor coolant system (RCS) during a severe accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS. A summary of the results and recommendations of an independent peer review of VICTORIA by the US Nuclear Regulatory Commission (NRC) is presented, along with recent applications of the code. The latter include analyses of a temperature-induced steam generator tube rupture sequence and post-test analyses of the Phebus FPT-1 test. The next planned Phebus test, FTP-4, will focus on fission product releases from a rubble bed, especially those of the less-volatile elements, and on the speciation of the released elements. Pretest analyses using VICTORIA to estimate the magnitude and timing of releases are presented. The predicted release of uranium is a matter of particular importance because of concern about filter plugging during the test.

More Details

Investigation of a steam generator tube rupture sequence using VICTORIA

Bixler, Nathan E.

VICTORIA-92 is a mechanistic computer code for analyzing fission product behavior within the reactor coolant system (RCS) during a severe reactor accident. It provides detailed predictions of the release of radionuclides and nonradioactive materials from the core and transport of these materials within the RCS. The modeling accounts for the chemical and aerosol processes that affect radionuclide behavior. Coupling of detailed chemistry and aerosol packages is a unique feature of VICTORIA; it allows exploration of phenomena involving deposition, revaporization, and re-entrainment that cannot be resolved with other codes. The purpose of this work is to determine the attenuation of fission products in the RCS and on the secondary side of the steam generator in an accident initiated by a steam generator tube rupture (SGTR). As a class, bypass sequences have been identified in NUREG-1150 as being risk dominant for the Surry and Sequoyah pressurized water reactor (PWR) plants.

More Details

VICTORIA-92 pretest analyses of PHEBUS-FPT0

Bixler, Nathan E.

FPT0 is the first of six tests that are scheduled to be conducted in an experimental reactor in Cadarache, France. The test apparatus consists of an in-pile fuel bundle, an upper plenum, a hot leg, a steam generator, a cold leg, and a small containment. Thus, the test is integral in the sense that it attempts to simulate all of the processes that would be operative in a severe nuclear accident. In FPT0, the fuel will be trace irradiated; in subsequent tests high burn-up fuel will be used. This report discusses separate pretest analyses of the FPT0 fuel bundle and primary circuit have been conducted using the USNRC`s source term code, VICTORIA-92. Predictions for release of fission product, control rod, and structural elements from the test section are compared with those given by CORSOR-M. In general, the releases predicted by VICTORIA-92 occur earlier than those predicted by CORSOR-M. The other notable difference is that U release is predicted to be on a par with that of the control rod elements; CORSOR-M predicts U release to be about 2 orders of magnitude greater.

More Details

Model for heat-up of structures in VICTORIA

Bixler, Nathan E.

VICTORIA is a mechanistic computer code that treats fission product behavior in the reactor coolant system during a severe accident. During an accident, fission products that deposit on structural surfaces produce heat loads that can cause fission products to revaporize and possibly cause structures, such as a pipe, to fail. This mechanism had been lacking from the VICTORIA model. This report describes the structural heat-up model that has recently been implemented in the code. A sample problem shows that revaporization of fission products can occur as structures heat up due to radioactive decay. In the sample problem, the mass of deposited fission products reaches a maximum, then diminishes. Similarly, temperatures of the deposited film and adjoining structure reach a maximum, then diminish.

More Details
Results 101–121 of 121
Results 101–121 of 121