Publications

Results 76–100 of 120

Search results

Jump to search filters

Null-hypothesis testing using distance metrics for verification of arms-control treaties

2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016

Khalil, Mohammad; Brubaker, E.; Hilton, Nathan R.; Kupinski, Matthew A.; Macgahan, Christopher J.; Marleau, P.

We investigate the feasibility of constructing a data-driven distance metric for use in null-hypothesis testing in the context of arms-control treaty verification. The distance metric is used in testing the hypothesis that the available data are representative of a certain object or otherwise, as opposed to binary-classification tasks studied previously. The metric, being of strictly quadratic form, is essentially computed using projections of the data onto a set of optimal vectors. These projections can be accumulated in list mode. The relatively low number of projections hampers the possible reconstruction of the object and subsequently the access to sensitive information. The projection vectors that channelize the data are optimal in capturing the Mahalanobis squared distance of the data associated with a given object under varying nuisance parameters. The vectors are also chosen such that the resulting metric is insensitive to the difference between the trusted object and another object that is deemed to contain sensitive information. Data used in this study were generated using the GEANT4 toolkit to model gamma transport using a Monte Carlo method. For numerical illustration, the methodology is applied to synthetic data obtained using custom models for plutonium inspection objects. The resulting metric based on a relatively low number of channels shows moderate agreement with the Mahalanobis distance metric for the trusted object but enabling a capability to obscure sensitive information.

More Details

Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation

Journal of Sound and Vibration

Robinson, Brandon; Rocha Da Costa, Leandro J.; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit

Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.

More Details

Inference of H2O2 thermal decomposition rate parameters from experimental statistics

10th U.S. National Combustion Meeting

Casey, T.; Khalil, Mohammad; Najm, Habib N.

The thermal decomposition of H2O2 is an important process in hydrocarbon combustion playing a particularly crucial role in providing a source of radicals at high pressure where it controls the 3rd explosion limit in the H2-O2 system, and also as a branching reaction in intermediatetemperature hydrocarbon oxidation. As such, understanding the uncertainty in the rate expression for this reaction is crucial for predictive combustion computations. Raw experimental measurement data, and its associated noise and uncertainty, is typically unreported in most investigations of elementary reaction rates, making the direct derivation of the joint uncertainty structure of the parameters in rate expressions difficult. To overcome this, we employ a statistical inference procedure, relying on maximum entropy and approximate Bayesian computation methods, and using a two-level nested Markov Chain Monte Carlo algorithm, to arrive at a posterior density on rate parameters for a selected case of laser absorption measurements in a shock tube study, subject to the constraints imposed by the reported experimental statistics. The procedure constructs a set of H2O2 concentration decay profiles consistent with these reported statistics. These consistent data sets are then used to determine the joint posterior density on the rate parameters through straightforward Bayesian inference. Broadly, the method also provides a framework for the replication and comparison of missing data from different experiments, based on reported statistics, for the generation of consensus rate expressions.

More Details

Inference of H2O2 thermal decomposition rate parameters from experimental statistics

10th U.S. National Combustion Meeting

Casey, T.; Khalil, Mohammad; Najm, Habib N.

The thermal decomposition of H2O2 is an important process in hydrocarbon combustion playing a particularly crucial role in providing a source of radicals at high pressure where it controls the 3rd explosion limit in the H2-O2 system, and also as a branching reaction in intermediatetemperature hydrocarbon oxidation. As such, understanding the uncertainty in the rate expression for this reaction is crucial for predictive combustion computations. Raw experimental measurement data, and its associated noise and uncertainty, is typically unreported in most investigations of elementary reaction rates, making the direct derivation of the joint uncertainty structure of the parameters in rate expressions difficult. To overcome this, we employ a statistical inference procedure, relying on maximum entropy and approximate Bayesian computation methods, and using a two-level nested Markov Chain Monte Carlo algorithm, to arrive at a posterior density on rate parameters for a selected case of laser absorption measurements in a shock tube study, subject to the constraints imposed by the reported experimental statistics. The procedure constructs a set of H2O2 concentration decay profiles consistent with these reported statistics. These consistent data sets are then used to determine the joint posterior density on the rate parameters through straightforward Bayesian inference. Broadly, the method also provides a framework for the replication and comparison of missing data from different experiments, based on reported statistics, for the generation of consensus rate expressions.

More Details

Inference of reaction rate parameters based on summary statistics from experiments

Proceedings of the Combustion Institute

Khalil, Mohammad; Chowdhary, Kenny; Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H2/O2-mechanism chain branching reaction H + O2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the given summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.

More Details
Results 76–100 of 120
Results 76–100 of 120