Modeling cookoff of explosives using distributed activation energies
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Energetic Materials
We have completed a series of small-scale cook-off experiments of ammonium nitrate (AN) prills in our Sandia Instrumented Thermal Ignition test at nominal packing densities of about 0.8 g/cm3. We increased the boundary temperature of our aluminum confinement cylinder from room temperature to a prescribed set-point temperature in 10 min. Our set-point temperature ranged from 508 to 538 K. The external temperature of the confining cylinder was held at the set-point temperature until ignition. We used type K thermocouples to measure temperatures associated with several polymorphic phase changes as well as melting and boiling. As the AN boiled, our thermocouples were destroyed by corrosion, which may have been caused by reaction of hot nitric acid (HNO3) with nickel to form nickel nitrate, Ni(NO3)2. Videos of the corroding thermocouples showed a green solution that was similar to the color of Ni(NO3)2. We found that ignition was imminent as the AN boiling point was exceeded. Ignition of the AN prills was modeled by solving the energy equation with an energy source due to desorption of moisture and decomposition of AN to form equilibrium products. A Boussinesq approximation was used in conjunction with the momentum equation to model flow of the liquid AN. We found that the prediction of ignition was not sensitive to small perturbations in the latent enthalpies.
Abstract not provided.
Combustion and Flame
We have used several configurations of the Sandia Instrumented Thermal Ignition (SITI) experiment to develop a pressure-dependent, four-step ignition model for a plastic bonded explosive (PBX 9407) consisting of 94 wt.% RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and a 6 wt.% VCTFE binder (vinyl chloride/chlorotrifluoroethylene copolymer). The four steps include desorption of water, decomposition of RDX to form equilibrium products, pressure-dependent decomposition of RDX forming equilibrium products, and decomposition of the binder to form hydrogen chloride and a nonvolatile residue (NVR). We address drying, binder decomposition, and decomposition of the RDX component from the pristine state through the melt and into ignition. We used Latin Hypercube Sampling (LHS) of the parameters to determine the sensitivity of the model to variation in the parameters. We also successfully validated the model using one-dimensional time-to-explosion (ODTX and P-ODTX) data from a different laboratory. Our SITI test matrix included 1) different densities ranging from 0.7 to 1.63 g/cm3, 2) free gas volumes ranging from 1.2 to 38 cm3, and 3) boundary temperatures ranging from 170 to 190 °C. We measured internal temperatures using embedded thermocouples at various radial locations as well as pressure using tubing that was connected from the free gas volume (ullage) to a pressure gauge. We also measured gas flow from our vented experiments. A borescope was included to obtain in situ video during some SITI experiments. We observed significant changes in the explosive volume prior to ignition. Our model, in conjunction with data observations, imply that internal accumulation of decomposition gases in high density PBX 9407 (90% of the theoretical maximum density) can contribute to significant strain whether or not the experiment is vented or sealed.
Science and Technology of Energetic Materials
In previous studies, we found that the nitroplasticizer in the HMX-based explosive PBX 9501 played a crucial role in cookoff, especially when predicting response in larger systems. We have recently completed experiments with a similar explosive, LX-14, that has a relatively nonreactive binder. We expected the ignition times for LX-14 to be longer than PBX 9501 since PBX 9501 has a more reactive binder. However, our experiments show the opposite trend. This paradox can be explained by retention of reactive gases within the interior of LX-14 by the higher strength binder resulting in faster ignition times. In contrast, the binder in PBX 9501 melts at low temperatures and does not retain decomposition gases as well as the LX- 14 binder. Retention of reactive gases in LX-14 may also explain the more violent response in oblique impact tests when compared to PBX 9501.
Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacements and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.
Shock Waves
In this study, we have made reasonable cookoff predictions of large-scale explosive systems by using pressure-dependent kinetics determined from small-scale experiments. Scale-up is determined by properly accounting for pressure generated from gaseous decomposition products and the volume that these reactive gases occupy, e.g. trapped within the explosive, the system, or vented. The pressure effect on the decomposition rates has been determined for different explosives by using both vented and sealed experiments at low densities. Low-density explosives are usually permeable to decomposition gases and can be used in both vented and sealed configurations to determine pressure-dependent reaction rates. In contrast, explosives that are near the theoretical maximum density (TMD) are not as permeable to decomposition gases, and pressure-dependent kinetics are difficult to determine. Ignition in explosives at high densities can be predicted by using pressure-dependent rates determined from the low-density experiments as long as gas volume changes associated with bulk thermal expansion are also considered. In the current work, cookoff of the plastic-bonded explosives PBX 9501 and PBX 9502 is reviewed and new experimental work on LX-14 is presented. Reactive gases are formed inside these heated explosives causing large internal pressures. The pressure is released differently for each of these explosives. For PBX 9501, permeability is increased and internal pressure is relieved as the nitroplasticizer melts and decomposes. Internal pressure in PBX 9502 is relieved as the material is damaged by cracks and spalling. For LX-14, internal pressure is not relieved until the explosive thermally ignites. The current paper is an extension of work presented at the 26th ICDERS symposium [1].
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion and Flame
We have used a modified version of the Sandia Instrumented Thermal Ignition (SITI) experiment to develop a pressure-dependent, five-step ignition model for a plastic bonded explosive (PBX 9501) consisting of 95 wt% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine (HMX), 2.5 wt% Estane® 5703 (a polyurethane thermoplastic), and 2.5 wt% of a nitroplasticizer (NP): BDNPA/F, a 50/50 wt% eutectic mixture bis(2,2-dinitropropyl)-acetal (BDNPA) and bis(2,2-dinitropropyl)-formal (BDNPF). The five steps include desorption of water, decomposition of the NP to form NO2, reaction of the NO2 with Estane® and HMX, and decomposition of HMX. The model was fit using our experiments and successfully validated with experiments from five other laboratories with scales ranging from about 2 g to more than 2.5 kg of PBX. Our experimental variables included density, confinement, free gas volume, and temperature. We measured internal temperatures, confinement pressure, and ignition time. In some of our experiments, we used a borescope to visually observe the decomposing PBX. Our observations included the endothermic β–δ phase change of the HMX, a small exothermic temperature excursion in low-density unconfined experiments, and runaway ignition. We hypothesize that the temperature excursion in these low density experiments was associated with the NP decomposing exothermically within the PBX sample. This reactant-limited temperature excursion was not observed with our thermocouples in the high-density experiments. For these experiments, we believe the binder diffused to the edges of our high density samples and decomposed next to the highly conductive wall as confirmed by our borescope images.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Science and Technology of Energetic Materials
Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complex bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.
A number of cook-off experiments were performed to provide understanding of potential thermal ignition of drum 68660 in the February 14, 2014 radiation release at WIPP. Testing was begun according to the plan provided in Appendix B, and deviated significantly based on initial findings and other information developed during the testing. Two general types of experiments were performed: ones with nitric acid neutralized to varying degrees with Kolorsafe neutralizer, and ones with no added free liquid. Results indicate that reactivity is greater in the dry mixture, and that Fe nitrate and Ca nitrate play significant roles in ignition behavior whereas Pb nitrate, Cr nitrate, and oxalic acid do not. Within mixtures with liquid, very little exothermic behavior is observed with Swheat and water, but adding neutralized acid and nitrate salts results in significant reactivity and ignition. This behavior is suppressed by liquid water, and ignition occurs after the water has fully vaporized, although it is not clear if ignition occurs quickly because of the relatively high wall temperature at the end of the vaporization process.
Science and Technology of Energetic Materials
Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia's Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complex bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.
Abstract not provided.