Publications

Results 26–50 of 79

Search results

Jump to search filters

Design and calibration of an optically segmented single volume scatter camera for neutron imaging

Journal of Instrumentation

Galindo-Tellez, A.; Keefe, Kevin P.; Adamek, E.; Brubaker, E.; Crow, B.; Dorrill, R.; Druetzler, A.; Felix, C.J.; Kaneshige, N.; Learned, J.G.; Manfredi, J.J.; Nishimura, K.; Souza, B.P.; Schoen, D.; Sweany, Melinda D.

The Optically Segmented Single Volume Scatter Camera (OS-SVSC) aims to image neutron sources for non-proliferation applications using the kinematic reconstruction of elastic double-scatter events. Our prototype system consists of 64 EJ-204 organic plastic scintillator bars, each measuring 5 mm × 5 mm × 200 mm and individually wrapped in Teflon tape. The scintillator array is optically coupled to two silicon photomultiplier ArrayJ-60035 64P-PCB arrays, each comprised of 64 individual 6 mm × 6 mm J-Series sensors arranged in an 8 × 8 array. We report on the design details, including component selections, mechanical design and assembly, and the electronics system. The described design leveraged existing off-the-shelf solutions to support the rapid development of a phase 1 prototype. Several valuable lessons were learned from component and system testing, including those related to the detector’s mechanical structure and electrical crosstalk that we conclude originates in the commercial photodetector arrays and the associated custom breakout cards. We detail our calibration efforts, beginning with calibrations for the electronics, based on the IRS3D application-specific integrated circuits, and their associated timing resolutions, ranging from 30 ps to 90 ps. With electronics calibrations applied, energy and position calibrations were performed for a set of edge bars using 22Na and 90Sr, respectively, reporting an average resolution of (12.07 ± 0.03) mm for energy depositions between 900 keVee and 1000 keVee. We further demonstrate a position calibration method for the internal bars of the matrix using cosmic-ray muons as an alternative to emission sources that cannot easily access these bars, with an average measured resolution of (14.86 ± 0.29) mm for depositions between 900 keVee and 1000 keVee. The coincident time resolution reported between pairs of bars measured up to 400 ps from muon acquisitions. Energy and position calibration values measured with muons are consistent with those obtained using particle emission sources.

More Details

Single Volume Scatter Camera: Optically Segmented Effort - Single Slide Overview

Sweany, Melinda D.; Adamek, E.; Alhajaji, H.; Brown, James R.; Balathy, John; Brubaker, E.; Cabrera-Palmer, B.; Cates, J.C.B.; Dorril, R.; Druetzler, A.; Elam, J.; Febbraro, M.; Feng, Patrick L.; Folsom, Michael W.; Gabella, G.; Galindo-Tellez, A.; Goldblum, B.; Hausladen, P.; Kaneshige, N.; Keffe, Kevin; Laplace, T.A.; Maggi, Paul; Mane, A.; Manfredi, J.; Marleau, P.; Mattingly, J.; Mishra, M.; Moustafa, A.; Nattress, J.; Nishimura, K.; Pinto-Souza, B.; Steele, J.; Takahashi, E.; Ziock, K.

Abstract not provided.

Single Volume Scatter Camera: Optically Segmented Effort

Sweany, Melinda D.; Adamek, E.; Alhajaji, H.; Brown, James R.; Balathy, John; Brubaker, E.; Cabrera-Palmer, B.; Cates, J.C.B.; Dorril, R.; Druetzler, A.; Elam, J.; Febbraro, M.; Feng, Patrick L.; Folsom, Michael W.; Gabella, G.; Galindo-Tellez, A.; Goldblum, B.; Hausladen, P.; Kaneshige, N.; Keffe, Kevin; Laplace, T.A.; Maggi, Paul; Mane, A.; Manfredi, J.; Marleau, P.; Mattingly, J.; Mishra, M.; Moustafa, A.; Nattress, J.; Nishimura, K.; Pinto-Souza, B.; Steele, J.; Takahashi, E.; Ziock, K.

Abstract not provided.

The Single-Volume Scatter Camera

Manfredi, Juan; Adamek, Evan; Brown, Joshua; Brubaker, E.; Cabrera-Palmer, B.; Cates, Joshua; Dorrill, Ryan; Druetzler, Andrew; Elam, Jeff; Feng, Patrick L.; Folsom, Micah; Galindo-Tellez, Aline; Goldblum, Bethany; Hausladen, Paul; Kaneshige, Nathan; Keefe, Kevin P.; Laplace, Thibault; Learned, John; Mane, Anil; Marleau, P.; Mattingly, John; Mishra, Mudit; Moustafa, Ahmed; Nattress, Jason; Steele, J.; Sweany, Melinda D.; Weinfurther, Kyle J.; Ziock, Klaus-Peter

Abstract not provided.

Characterization of a silicon photo-multiplier array with summing board as a photo-multiplier tube replacement in organic scintillator assemblies

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Sweany, Melinda D.; Marleau, P.; Allwork, C.; Kallenbach, G.; Hammon, Steven

We report on the energy, timing, and pulse-shape discrimination performance of cylindrical 5.08 cm diameter × 5.08 cm thick and 7.62 cm diameter × 7.62 cm thick trans-stilbene crystals read out with the passively summed output of three different commercial silicon photo-multiplier arrays. Our results indicate that using the summed output of an 8 × 8 array of SiPMs provides performance competitive with photo-multiplier tubes for many neutron imaging and correlated particle measurements. For a 5.08 cm diameter × 5.08 cm thick crystal read out with SensL's ArrayJ-60035_64P-PCB, which had the best overall properties, we measure the energy resolution as 17.8 ± 0.8% at 341 keVee (σ/E), the timing resolution in the 180–400 keVee range as 236 ± 61 ps (σ), and the pulse-shape discrimination figure-of-merit as 2.21 ± 0.03 in the 230–260 keVee energy range. For a 7.62 cm diameter × 7.62 cm thick crystal read out with SensL's ArrayJ-60035_64P-PCB, we measure the energy resolution as 21.9 ± 2.3% at 341 keVee, the timing resolution in the 180–400 keVee range as 518 ± 42 ps, and the pulse-shape discrimination figure-of-merit as 1.49 ± 0.01 in the 230–260 keVee energy range. These results enable many scintillator-based instruments to enjoy the size, robustness, and power benefits of silicon photo-multiplier arrays as replacement for the photo-multiplier tubes that are predominantly used today.

More Details

The single-volume scatter camera

Proceedings of SPIE - The International Society for Optical Engineering

Manfredi, Juan J.; Adamek, Evan; Brown, Joshua A.; Brubaker, E.; Cabrera-Palmer, B.; Cates, Joshua; Dorrill, Ryan; Druetzler, Andrew; Elam, Jeff; Feng, Patrick L.; Folsom, Micah; Galindo-Tellez, Aline; Goldblum, Bethany L.; Hausladen, Paul; Kaneshige, Nathan; Keefe, Kevin P.; Laplace, Thibault A.; Learned, John G.; Mane, Anil; Marleau, P.; Mattingly, John; Mishra, Mudit; Moustafa, Ahmed; Nattress, Jason; Steele, J.; Sweany, Melinda D.; Weinfurther, Kyle J.; Ziock, Klaus P.

The multi-institution Single-Volume Scatter Camera (SVSC) collaboration led by Sandia National Laboratories (SNL) is developing a compact, high-efficiency double-scatter neutron imaging system. Kinematic emission imaging of fission-energy neutrons can be used to detect, locate, and spatially characterize special nuclear material. Neutron-scatter cameras, analogous to Compton imagers for gamma ray detection, have a wide field of view, good event-by-event angular resolution, and spectral sensitivity. Existing systems, however, suffer from large size and/or poor efficiency. We are developing high-efficiency scatter cameras with small form factors by detecting both neutron scatters in a compact active volume. This effort requires development and characterization of individual system components, namely fast organic scintillators, photodetectors, electronics, and reconstruction algorithms. In this presentation, we will focus on characterization measurements of several SVSC candidate scintillators. The SVSC collaboration is investigating two system concepts: the monolithic design in which isotropically emitted photons are detected on the sides of the volume, and the optically segmented design in which scintillation light is channeled along scintillator bars to segmented photodetector readout. For each of these approaches, we will describe the construction and performance of prototype systems. We will conclude by summarizing lessons learned, comparing and contrasting the two system designs, and outlining plans for the next iteration of prototype design and construction.

More Details

Effect of Teflon Wrapping on the Interaction Position Reconstruction Resolution in Long, Thin Plastic Scintillator Pillars

2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020

Moustafa, Ahmed; Galindo-Tellez, Aline; Sweany, Melinda D.; Brubaker, E.; Mattingly, John

An optically-segmented single-volume scatter camera is being developed to image MeV-energy neutron sources. The design employs long, thin, optically isolated organic scintillator pillars with 5 mm × 5 mm × 200 mm dimensions (i.e., an aspect-ratio of 1:1:40). Teflon reflector is used to achieve optical isolation and improve light collection. The effect of Teflon on the ability to resolve the radiation interaction locations along such high aspect-ratio pillars is investigated. It was found that reconstruction based on the amplitude of signals collected on both ends of a bare pillar is less precise than reconstruction based on their arrival times. However, this observation is reversed after wrapping in Teflon, such that there is little to no improvement in reconstruction resolution calculated by combining both methods. It may be possible to use another means of optical isolation that does not require wrapping each individual pillar of the camera.

More Details

Position and Timing Resolution Measurements ofOrganic-Glass scintillator bars for the OpticallySegmented Single-Volume Scatter Camera

Sweany, Melinda D.; Brown, Jason; Cabrera-Palmer, B.; Carlson, Joseph; Dorrill, R.; Druetzler, A.; Elam, J.; Febbraro, M.; Feng, Patrick L.; Folsom, Michael W.; Galino-Tellez, A.; Goldblum, B.; Hausladen, P.; Kaneshige, N.; Keffe, K.; Laplace, T.; Learned, J.; Mane, A.; Manfredi, Juan; Marleau, P.; Mattingly, J.; Mishra, M.; Moustafa, A.; Nattress, J.; Steele, J.; Weinfurther, K.; Ziock, K.

Abstract not provided.

Current Status of an Optically-Segmented Single-Volume Scatter Camera for Neutron Imaging

Brown, J.A.; Brubaker, E.; Dorril, R.; Druetzler, A.; Elam, J.; Febbraro, M.; Feng, Patrick L.; Folsom, Michael W.; Galino-Tellez, A.; Goldblum, B.L.; Hausladen, P.; Kaneshige, N.; Keffe, K.; Laplace, T.A.; Learned, J.G.; Mane, A.; Manfredi, J.; Marleau, Peter; Mattingly, J.; Mishra; Almanza-Madrid, Rene A.; Moustafa, A.; Nattress, J.; Steele, J.; Sweany, Melinda D.; Weinfurther, K.; Ziock, K.

Abstract not provided.

Current status of an optically-segmented single-volume scatter camera for neutron imaging

Brown, Joshua; Brubaker, E.; Cabrera-Palmer, B.; Carlson, Joseph; Dorril, Ryan; Druetzler, Andrew; Elam, Jeff; Febbraro, Michael; Feng, Patrick L.; Folsom, Micah; Galino-Tellez, Aline; Goldblum, Bethany; Hausladen, Paul; Kaneshige, Nate; Keffe, Kevin; Laplace, Tibo; Learned, John; Mane, Anil; Manfredi, Juan; Marleau, P.; Mattingly, John; Mishra, Mudit; Moustafa, Ahmed; Nattress, Jason; Nishimura, Kurtis; Steele, J.; Sweany, Melinda D.; Ziock, Klaus

Abstract not provided.

Design and Evaluation of a Pixelated PSD-capable Scintillator Detector with SiPM Readout

Sweany, Melinda D.; Marleau, P.; Hammon, Steven; Kallenbach, Gene; Polack, John K.

We present the detector response comparison between a 10x10 pixellated array of scintillator read out with Anger logic using four 2" Hamamatsu R7724-100 super bialkali photomultiplier tubes (PMT) and a custom Silicon photomultiplier (SiPM) board consisting of 100 C-series 6x6 mm SiPMs from SensL. An array of these pixellated detectors are currently used in the Neutron Coded Aperture (NCA) imaging system. The energy, timing and pulse shape discrimination response using both readout schemes are presented, along with an analysis of multiple scatter events occurring within the block. An evaluation of the impact of photodetector readout on the overall detection efficiency and imaging accuracy is presented.

More Details

Interaction position, time, and energy resolution in organic scintillator bars with dual-ended readout

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Sweany, Melinda D.; Brown, J.; Brubaker, E.; Dorrill, R.; Druetzler, A.; Galindo-Tellez, A.; Kaneshige, N.; Learned, J.; Nishimura, K.; Wonseok, Bae

We report on the position, timing, and energy resolution of a range of plastic scintillator bars and reflector treatments using dual-ended silicon photomultiplier readout. These measurements are motivated by the upcoming construction of an optically segmented single-volume neutron scatter camera, in which neutron elastic scattering off of hydrogen is used to kinematically reconstruct the location and energy of a neutron-emitting source. For this application, interaction position resolutions of about 10 mm and timing resolutions of about 1 ns are necessary to achieve the desired efficiency for fission-energy neutrons. The results presented here indicate that this is achievable with an array of 5×5×190mm 3 bars of EJ-204 scintillator wrapped in Teflon tape, read out with SensL's J-series 6×6mm 2 silicon photomultipliers. With two independent setups, we also explore the systematic variability of the position resolution, and show that, in general, using the difference in the pulse arrival time at the two ends is less susceptible to systematic variation than using the log ratio of the charge amplitude of the two ends. Finally, we measure a bias in the absolute time of interactions as a function of position along the bar: the measured interaction time for events at the center of the bar is ∼100 ps later than interactions near the SiPM.

More Details

Characterization of a Silicon photo-multiplier summing breakout board for photo-multiplier tube replacement

Sweany, Melinda D.; Marleau, P.; Kallenbach, Gene A.

We present the relative timing and pulse-shape discrimination performance of a H1949-50 photomultiplier tube to SensL ArrayX-B0B6_64S coupled to a SensL ArrayC-60035-64P- PCB Silicon Photomultiplier array. The goal of this work is to enable the replacement of photomultiplier readout of scintillators with Silicon Photomultiplier devices, which are more robust and have higher particle detection efficiency. The report quantifies the degradation of these performance parameters using commercial off the shelf summing circuits, and motivates the development of an improved summing circuit: the pulse-shape descrimination figure-of-merit drops from 1.7 at 500 keVee to 1.4, and the timing resolution (σ) is 288 ps for the photomultiplier readout and approximately 1 ns for the Silicon Photomultiplier readout. A degradation of this size will have a large negative impact on any device that relies on timing coincidence or pulse-shape discrimination to detect neutron interactions, such as neutron kinematic imaging or multiplicity measurements.

More Details

Feasibility of Single-sided 3D elemental imaging

Sweany, Melinda D.; Gerling, Mark; Marleau, P.; Monterial, Mateusz

We present single-sided 3D image reconstruction and neutron spectrum of non-nuclear material interrogated with a deuterium-tritium neutron generator. The results presented here are a proof-of-principle of an existing technique previously used for nuclear material, applied to non-nuclear material. While we do see excess signatures over background, they do not have the expected form and are currently un-identified.

More Details
Results 26–50 of 79
Results 26–50 of 79