Finding alloys with specific design properties is challenging due to the large number of possible compositions and the complex interactions between elements. This study introduces a multi-objective Bayesian optimization approach guiding molecular dynamics simulations for discovering high-performance refractory alloys with both targeted intrinsic static thermomechanical properties and also deformation mechanisms occurring during dynamic loading. The objective functions are aiming for excellent thermomechanical stability via a high bulk modulus, a low thermal expansion, a high heat capacity, and for a resilient deformation mechanism maximizing the retention of the BCC phase after shock loading. Contrasting two optimization procedures, we show that the Pareto-optimal solutions are confined to a small performance space when the property objectives display a cooperative relationship. Conversely, the Pareto front is much broader in the performance space when these properties have antagonistic relationships. Density functional theory simulations validate these findings and unveil underlying atomic-bond changes driving property improvements.
A series of MD and DFT simulations were performed to investigate hydrogen self-clustering and retention in tungsten. Using a newly develop machine learned interatomic potential, spontaneous formation of hydrogen platelets was observed after implanting low-energy hydrogen into tungsten at high fluxes and temperatures. The platelets formed along low miller index orientations and neighboring tetrahedral and octahedral sites and could grow to over 50 atoms in size. High temperatures above 600 K and high hydrogen concentrations were needed to observe significant platelet formation. A critical platelet size of six hydrogen atoms was needed for long term stability. Platelets smaller than this were found to be thermally unstable within a few nanoseconds. To verify these observations, characteristic platelets from the MD simulations were simulated using large-scale DFT. DFT corroborated the MD results in that large platelets were also found to be dynamically stable for five or more hydrogen atoms. The LDOS from the DFT simulated platelets indicated that hydrogen atoms, particularly at the periphery of the platelet, were found to be at least as stable as hydrogen atoms in bulk tungsten. In addition, electrons were found to be localized around hydrogen atoms in the platelet itself and that hydrogen atoms up to 4.2 Å away within the platelet were found to share charge suggesting that the hydrogen atoms are interacting across longer distances than previously suggested. These results reveal a self-clustering mechanisms for hydrogen within tungsten in the absence of radiation induced or microstructural defects that could be a precursor to blistering and potentially explain the experimentally observed high hydrogen retention particularly in the near surface region.
Tungsten (W) is a material of choice for the divertor material due to its high melting temperature, thermal conductivity, and sputtering threshold. However, W has a very high brittle-to-ductile transition temperature, and at fusion reactor temperatures (≥1000 K), it may undergo recrystallization and grain growth. Dispersion-strengthening W with zirconium carbide (ZrC) can improve ductility and limit grain growth, but much of the effects of the dispersoids on microstructural evolution and thermomechanical properties at high temperatures are still unknown. We present a machine learned Spectral Neighbor Analysis Potential for W-ZrC that can now be used to study these materials. In order to construct a potential suitable for large-scale atomistic simulations at fusion reactor temperatures, it is necessary to train on ab initio data generated for a diverse set of structures, chemical environments, and temperatures. Further accuracy and stability tests of the potential were achieved using objective functions for both material properties and high temperature stability. Validation of lattice parameters, surface energies, bulk moduli, and thermal expansion is confirmed on the optimized potential. Tensile tests of W/ZrC bicrystals show that although the W(110)-ZrC(111) C-terminated bicrystal has the highest ultimate tensile strength (UTS) at room temperature, observed strength decreases with increasing temperature. At 2500 K, the terminating C layer diffuses into the W, resulting in a weaker W-Zr interface. Meanwhile, the W(110)-ZrC(111) Zr-terminated bicrystal has the highest UTS at 2500 K.
Interfacial segregation and chemical short-range ordering influence the behavior of grain boundaries in complex concentrated alloys. In this study, we use atomistic modeling of a NbMoTaW refractory complex concentrated alloy to provide insight into the interplay between these two phenomena. Hybrid Monte Carlo and molecular dynamics simulations are performed on columnar grain models to identify equilibrium grain boundary structures. Our results reveal extended near-boundary segregation zones that are much larger than traditional segregation regions, which also exhibit chemical patterning that bridges the interfacial and grain interior regions. Furthermore, structural transitions pertaining to an A2-to-B2 transformation are observed within these extended segregation zones. Both grain size and temperature are found to significantly alter the widths of these regions. An analysis of chemical short-range order indicates that not all pairwise elemental interactions are affected by the presence of a grain boundary equally, as only a subset of elemental clustering types are more likely to reside near certain boundaries. The results emphasize the increased chemical complexity that is associated with near-boundary segregation zones and demonstrate the unique nature of interfacial segregation in complex concentrated alloys.