Publications

Results 26–38 of 38

Search results

Jump to search filters

Uncertainty Quantification for Machine Learning

Stracuzzi, David J.; Chen, Maximillian G.; Darling, Michael C.; Peterson, Matthew G.; Vollmer, Charles V.

In this paper, we assert the importance of uncertainty quantification for machine learning and sketch an initial research agenda. We define uncertainty in the context of machine learning, identify its sources, and motivate the importance and impact of its quantification. We then illustrate these issues with an image analysis example. The paper concludes by identifying several specific research issues and by discussing the potential long-term implications of uncertainty quantification for data analytics in general.

More Details

Preliminary Results on Uncertainty Quantification for Pattern Analytics

Stracuzzi, David J.; Brost, Randolph B.; Chen, Maximillian G.; Malinas, Rebecca; Peterson, Matthew G.; Phillips, Cynthia A.; Robinson, David G.; Woodbridge, Diane W.

This report summarizes preliminary research into uncertainty quantification for pattern ana- lytics within the context of the Pattern Analytics to Support High-Performance Exploitation and Reasoning (PANTHER) project. The primary focus of PANTHER was to make large quantities of remote sensing data searchable by analysts. The work described in this re- port adds nuance to both the initial data preparation steps and the search process. Search queries are transformed from does the specified pattern exist in the data? to how certain is the system that the returned results match the query? We show example results for both data processing and search, and discuss a number of possible improvements for each.

More Details
Results 26–38 of 38
Results 26–38 of 38