Publications

139 Results

Search results

Jump to search filters

A reduced Iwan model that includes pinning for bolted joint mechanics

Nonlinear Dynamics

Brake, M.R.W.

Bolted joints are prevalent in most assembled structures; however, predictive models for their behavior do not exist. Calibrated models, such as the Iwan model, are able to predict the response of a jointed structure over a range of excitations once calibrated at a nominal load. The Iwan model, though, is not widely adopted due to the high computational expense of implementation. To address this, an analytical solution of the Iwan model is derived under the hypothesis that for an arbitrary load reversal, there is a new distribution of dry friction elements, which are now stuck, that approximately resemble a scaled version of the original distribution of dry friction elements. The dry friction elements internal to the Iwan model do not have a uniform set of parameters and are described by a distribution of parameters, i.e., which internal dry friction elements are stuck or slipping at a given load, that ultimately governs the behavior of the joint as it transitions from microslip to macroslip. This hypothesis allows the model to require no information from previous loading cycles. Additionally, the model is extended to include the pinning behavior inherent in a bolted joint. Modifications of the resulting framework are discussed to highlight how the constitutive model for friction can be changed (in the case of an Iwan–Stribeck formulation) or how the distribution of dry friction elements can be changed (as is the case for the Iwan plasticity model). The reduced Iwan plus pinning model is then applied to the Brake–Reuß beam in order to discuss methods to deduce model parameters from experimental data.

More Details

Cultural Perspectives of the 2016 Nonlinear Mechanics and Dynamics Research Institute

Clayton, Suzanne; Dallo, Tessa; Dotson, Corey; Houston, Gwen; Kao, Mae-Ling; Kast, Keana; Kiegel, Kestrel; Mascarenas-Wells, Jordyn; Moreno, Eric; Sandoval, Lillian; Serrano-Smith, Ricardo; Brake, M.R.W.; Negus, Michaela; Todorova, Gergana

This report analyzes the results of a study on culture and its capability to influence research. The study occurred during the 2016 Nonlinear Mechanics and Dynamics Summer Research Institute, a six-week research program sponsored by Sandia National Laboratories and the University of New Mexico consisting of 27 graduate students participating in ten different projects. Two separate surveys were administered at the beginning and end of the Institute, in addition to interviews and observation, in order to study the effects of various cultural factors on engineering processes and maintaining professional interactions. The results of this study indicate that cultural differences are not a significant barrier to engineering progress and most cultural issues are minor. A variety of cultures instead provide new perspectives, advancing universal understanding.

More Details

Proceedings of the Fourth International Workshop on Jointed Structures

Brake, M.R.W.; Ewins, Daniel J.; Segalman, Daniel J.; Bergman, Lawrence A.; Quinn, D.D.

The Fourth International Workshop on Jointed Structures was held from October 19-21, 2015, in Dartington, UK. Forty-five researchers from both the United States and international locations convened to discuss the recent progress of mechanical joints related research and associated efforts in addition to developing a new roadmap for the evolution of joints research from academic to industrial applications over the next five to ten years. The workshop itself was organized around four themes: applications that can benefit from joints research (applicability), repeatability and variability issues in experiments (repeatability), challenges in developing predictive models (predictability), and potential paths forward (way forward). The outcomes of the workshop are still in progress as the joints community develops a new roadmap for joints research; however, there are many aspects that are related here within. The ultimate goal of this research community is to develop a validated method for the design and analysis of dynamically loaded structures with frictional joints.

More Details

Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

Tribology International

Flicek, Robert C.; Hills, David A.; Brake, M.R.W.

This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatch becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.

More Details

Proceedings of the 2016 Parameterized Reduced Order Modeling Workshop

Brake, M.R.W.; Epureanu, Bogdan I.; Millwater, Harry R.

The 2016 Parameterized Reduced Order Modeling (PROM) Workshop was held in June, 2016, in Albuquerque, NM. This workshop included 30 researchers who took part in a two day discussion regarding the state of the art for PROMs, complimentary reduced order modeling (ROM) theories, and discussion of the future directions of PROM research. The goals of the workshop were three-fold: to assess the relative accuracy, efficiency, and merits of the different PROM methods; to discuss the state of the art for ROMs and how PROMs can benefit from these advances; and to define the pressing challenges for PROMs and a path for future research collaborations.

More Details

ROMULIS 1.01.00

Lacayo, Robert M.; Brake, M.R.W.

The Reduced Order Modeling Unlimited Localized Interface Simulator (ROMULIS) is a set of toolbox scripts in MATLAB designed to perform nonlinear transient integration on a system of reduced order structural models that interact with each other at localized interfaces. ROMULIS is meant to provide a user-friendly interface for applying the latest developments in numerical techniques and modeling in structural dynamics analysis while also giving the freedom to implement new technologies from forthcoming research. This report documents how to use and interpret the toolbox scripts. The theory behind the code is given, followed by a manual for interacting with the scripts to perform simulations. Lastly, a high-level introduction that explains how the scripts interact with each other is given for aspiring developers.

More Details

A Novel Experimental Method for Measuring Coefficients of Restitution

Baca, Renee N.; Reu, P.L.; Aragon, Dannelle S.; Brake, M.R.W.; Foulk, James W.; Bejarano, Michael; Sumali, Hartono (Anton)

A novel, experimental method is presented for measuring the coefficient of restitution during impact events. These measurements are used to indirectly validate a new model of elastic-plastic contact. The experimental setup consists of a stainless steel sphere that is attached at the bottom of a 2.2 m long pendulum. The test materials are of the form of 1 inch diameter pucks that the sphere strikes over a range of velocities. Digital image correlation is used to measure the displacement and velocity of the ball. From this data the coefficient of restitution is calculated as a function of velocity. This report details the experimental setup, experimental process, the results acquired, as well as the future work.

More Details

The 2015 Nonlinear Mechanics and Dynamics Research Institute

Brake, M.R.W.; Negus, Michaela; Schwingshackl, Christoph W.; Reuss, Pascal; Allen, Matthew S.

The Nonlinear Mechanics and Dynamics (NOMAD) Research Institute is a six week long collaborative research program for graduate students from across the world. The 2015 NOMAD Research Institute was hosted jointly by Sandia National Laboratories and the University of New Mexico, and featured 24 graduate students working on seven different research projects. These projects included: developing experimental strategies for studying the dynamics of nonlinear systems, a numerical round robin for predicting the response of a jointed system, quantification of uncertainty in a lap joint, assessment of experimental substructuring methods, a study of stress waves propagating through jointed interfaces, structural design optimization with joints, and the nonlinear system identification of MEMS devices. This report details both the technical research and the programmatic organization of the 2015 NOMAD Research Institute.

More Details

A comparison of reduced order modeling techniques used in dynamic substructuring

Conference Proceedings of the Society for Experimental Mechanics Series

Roettgen, Daniel; Seeger, Benjamin; Tai, Wei; Baek, Seunghun; Dossogne, Tilan; Allen, Matthew; Kuether, Robert J.; Brake, M.R.W.; Mayes, Randall L.

Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then they are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.

More Details

Instantaneous frequency and damping from transient ring-down data

Conference Proceedings of the Society for Experimental Mechanics Series

Kuether, Robert J.; Brake, M.R.W.

Broadband impact excitation in structural dynamics is a common technique used to detect and characterize nonlinearities in mechanical systems since it excites many frequencies of a structure at once. Non-stationary time signals from transient ring-down measurements require time-frequency analysis tools to observe variations in frequency and energy dissipation as the response evolves. This work uses the short-time Fourier transform to estimate the instantaneous parameters from measured or simulated data. By combining the discrete Fourier transform with an expanding or contracting window function that moves along the time axis, the resulting spectra are used to estimate the instantaneous frequencies, damping ratios and complex Fourier coefficients. This method is demonstrated on a multi-degree-of-freedom beam with a cubic spring attachment. The amplitude-frequency dependence in the damped response is compared to the undamped nonlinear normal modes. A second example shows the results from experimental ring-down measurements taken on a beam with a lap joint, revealing how the mechanical interface introduces nonlinear frequency and damping parameters.

More Details

A numerical round robin for the prediction of the dynamics of jointed structures

Conference Proceedings of the Society for Experimental Mechanics Series

Gross, J.; Armand, J.; Lacayo, R.M.; Reuss, P.; Salles, L.; Schwingshackl, C.W.; Brake, M.R.W.; Kuether, Robert J.

Motivated by the current demands in high-performance structural analysis, and by a desire to better model systems with localized nonlinearities, analysts have developed a number of different approaches for modelling and simulating the dynamics of a bolted-joint structure. However, the types of conditions that make one approach more effective than the others remains poorly understood due to the fact that these approaches are developed from fundamentally and phenomenologically different concepts. To better grasp their similarities and differences, this research presents a numerical round robin that assesses how well three different approaches predict and simulate a mechanical joint. These approaches are applied to analyze a system comprised of two linear beam structures with a bolted joint interface, and their strengths and shortcomings are assessed in order to determine the optimal conditions for their use.

More Details

Determining model form uncertainty of reduced order models

Conference Proceedings of the Society for Experimental Mechanics Series

Bonney, Matthew S.; Kammer, Daniel C.; Brake, M.R.W.

The quantification of model form uncertainty is very important for engineers to understand when using a reduced order model. This quantification requires multiple numerical simulations which can be computationally expensive. Different sampling techniques, including Monte Carlo and Latin Hypercube, are explored while using the maximum entropy method to quantify the uncertainty. The maximum entropy method implements random matrices that maintain essential properties. This is explored on a planar frame using different types of substructure representations, such as Craig-Bampton. Along with the model form uncertainty of the substructure representation, the effect of component mode synthesis for each type of substructure representation on the model form uncertainty is studied.

More Details

Structural design with joints for maximum dissipation

Conference Proceedings of the Society for Experimental Mechanics Series

Stender, M.; Papangelo, A.; Allen, M.; Brake, M.R.W.; Schwingshackl, C.; Tiedemann, M.

Many engineered structures are assembled using different kinds of joints such as bolted, riveted and clamped joints. Even if joints are often a small part of the overall structure, they can have a massive impact on its dynamics due to the introduction of nonlinearities. Thus, joints are considered a design liability. Significant effort has been spent in joint characterization and modelling, but a predictive joint model is still non-existent. To overcome these uncertainties and ensure certain safety standards, joints are usually overdesigned according to static considerations and their stiffness. Especially damping and nonlinearity are not considered during the design process. This can lead to lower performance, lower payload, and as result of the joints structural dynamic models often do a poor job of predicting the dynamic response. However, it is well-known that, particularly for metal structures, joints represent the main source of energy dissipation. In this work a minimal model is used to show how structural performance can be improved using joints as a design variable. Common optimization tools are applied to a nonlinear joint model in order to damp undesired structural vibrations. Results illustrate how the intentional choice of joint parameters and locations can effectively reduce vibration level for a given operating point of a jointed structure.

More Details

A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring [PowerPoint]

Roettgen, Dan; Seeger, Benjamin; Tai, Wei; Baek, Seunghun; Dossogne, Tilan; Allen, Matthew S.; Kuether, Robert J.; Brake, M.R.W.; Mayes, Randall L.

Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then they are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.

More Details

A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension

Moore, Keegan J.; Brake, M.R.W.

Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

More Details

Sphere-by-Sphere Manufacturing of 3D Microscale Granular Materials

Boechler, Nicholas; Brake, M.R.W.; Mcgonigle, Lorcan; Kuhr, Bryan R.; Wallen, Samuel P.; Lechman, Jeremy B.; Bolintineanu, Dan S.

Two of the central challenges in the mechanical design of components in nuclear systems are the dissipation of energy from external shocks and the localization of energy in energetic materials. This research seeks to address these problems by developing a patterned granular microstructure that can be optimized to direct or impede the transfer of energy carried by stress waves. Such structures require the development of a manufacturing technique that can yield perfectly ordered lattices. Two branches of research are detailed here: the development of a sphere-by-sphere additive manufacturing technique, and the development of a framework for modeling the technique in order to guide future improvements. Proof of concept of the method is demonstrated, and recommendations for future work are made.

More Details

Determining Reduced Order Models for Optimal Stochastic Reduced Order Models

Bonney, Matthew S.; Brake, M.R.W.

The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.

More Details

Cultural Perspectives of the 2015 Nonlinear Mechanics and Dynamics Summer Research Institute

Arviso, Brittany M.; Croessmann, Charles L.; Fachko, Jonathan E.; Foulk, James W.; Brake, M.R.W.; Rizzo, Davinia B.

This paper discusses the results of a study to determine the impact of culture on engineering. The study took place during the 2015 Nonlinear Mechanics and Dynamics Summer Research Institute, a six-week research program sponsored by Sandia National Laboratories and the University of New Mexico consisting of 24 graduate students participating in seven different projects. Twenty-two of the participants and two of the mentors were interviewed to study the effects of cultural background on engineering processes and interactions. The results of this study indicate that cultural differences drive engineering practices.

More Details

Analysis of Modeling Parameters on Threaded Screws

Vigil, Miquela S.; Brake, M.R.W.; Foulk, James W.

Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation properties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connection. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

More Details

The 2014 Sandia Nonlinear Mechanics and Dynamics Summer Research Institute

Brake, M.R.W.; Reuss, Pascal; Schwingshackl, Christoph W.; Salles, Loic; Negus, Michaela; Peebles, Diane; Mayes, Randall L.; Bilbao-Ludena, Juan-Carlos; Bonney, Matthew S.; Catalfamo, Simone; Gastaldi, Chiara; Gross, Johann; Lacayo, Robert M.; Robertson, Brett A.; Smith, Scott; Swacek, Christian; Tiedemann, Merten

A collaborative research institute was organized and held at Sandia Albuquerque for a period of six weeks. This research institute brought together researchers from around the world to work collaboratively on a set of research projects. These research projects included: developing experimental guidelines for studying variability and repeatability of nonlinear structures; decoupling aleatoric and epistemic uncertainty in measurements to improve dynamic predictions; a numerical round robin to assess the performance of five different numerical codes for modeling systems with strong nonlinearities; and an assessment of experimentally derived and numerically derived reduced order models. In addition to the technical collaborations, the institute also included a series of seminars given by both Sandians and external experts, as well as a series of tours and field trips to local places of scientific and engineering importance. This report details both the technical research and the programmatic organization of the 2014 Sandia Nonlinear Mechanics and Dynamics Summer Research Institute.

More Details

An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

Kuhr, Bryan; Brake, M.R.W.; Lechman, Jeremy B.

The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

More Details

An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

International Journal of Solids and Structures

Brake, M.R.W.

Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model is based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.

More Details

Fully parameterized reduced order models using hyper-dual numbers and component mode synthesis

Proceedings of the ASME Design Engineering Technical Conference

Bonney, Matthew S.; Kammer, Daniel C.; Brake, M.R.W.

The uncertainty of a system is usually quantified with the use of sampling methods such as Monte-Carlo or Latin hypercube sampling. These sampling methods require many computations of the model and may include re-meshing. The re-solving and re-meshing of the model is a very large computational burden. One way to greatly reduce this computational burden is to use a parameterized reduced order model. This is a model that contains the sensitivities of the desired results with respect to changing parameters such as Young's modulus. The typical method of computing these sensitivities is the use of finite difference technique that gives an approximation that is subject to truncation error and subtractive cancellation due to the precision of the computer. One way of eliminating this error is to use hyperdual numbers, which are able to generate exact sensitivities that are not subject to the precision of the computer. This paper uses the concept of hyper-dual numbers to parameterize a system that is composed of two substructures in the form of Craig-Bampton substructure representations, and combine them using component mode synthesis. The synthesis transformations using other techniques require the use of a nominal transformation while this approach allows for exact transformations when a perturbation is applied. This paper presents this technique for a planar motion frame and compares the use and accuracy of the approach against the true full system. This work lays the groundwork for performing component mode synthesis using hyper-dual numbers.

More Details

Utilizing Soize's Approach to Identify Parameter and Model Uncertainties

Bonney, Matthew S.; Brake, M.R.W.

Quantifying uncertainty in model parameters is a challenging task for analysts. Soize has derived a method that is able to characterize both model and parameter uncertainty independently. This method is explained with the assumption that some experimental data is available, and is divided into seven steps. Monte Carlo analyses are performed to select the optimal dispersion variable to match the experimental data. Along with the nominal approach, an alternative distribution can be used along with corrections that can be utilized to expand the scope of this method. This method is one of a very few methods that can quantify uncertainty in the model form independently of the input parameters. Two examples are provided to illustrate the methodology, and example code is provided in the Appendix.

More Details

Development of an improved MATLAB GUI for the prediction of coefficients of restitution, and integration into LMS

Baca, Renee N.; Brake, M.R.W.

In 2012, a Matlab GUI for the prediction of the coefficient of restitution was developed in order to enable the formulation of more accurate Finite Element Analysis (FEA) models of components. This report details the development of a new Rebound Dynamics GUI, and how it differs from the previously developed program. The new GUI includes several new features, such as source and citation documentation for the material database, as well as a multiple materials impact modeler for use with LMS Virtual.Lab Motion (LMS VLM), and a rigid body dynamics modeling software. The Rebound Dynamics GUI has been designed to work with LMS VLM to enable straightforward incorporation of velocity-dependent coefficients of restitution in rigid body dynamics simulations.

More Details

A Method for the Quantification of Model Form Error Associated with Physical Systems

Brake, M.R.W.

In the process of model validation, models are often declared valid when the differences between model predictions and experimental data sets are satisfactorily small. However, little consideration is given to the effectiveness of a model using parameters that deviate slightly from those that were fitted to data, such as a higher load level. Furthermore, few means exist to compare and choose between two or more models that reproduce data equally well. These issues can be addressed by analyzing model form error, which is the error associated with the differences between the physical phenomena captured by models and that of the real system. This report presents a new quantitative method for model form error analysis and applies it to data taken from experiments on tape joint bending vibrations. Two models for the tape joint system are compared, and suggestions for future improvements to the method are given. As the available data set is too small to draw any statistical conclusions, the focus of this paper is the development of a methodology that can be applied to general problems.

More Details

Evaluating convergence of reduced order models using nonlinear normal modes

Conference Proceedings of the Society for Experimental Mechanics Series

Brake, M.R.W.; Brake, M.R.W.; Allen, Mathew S.

It is often prohibitively expensive to integrate the response of a high order nonlinear system, such as a finite element model of a nonlinear structure, so a set of linear eigenvectors is often used as a basis in order to create a reduced order model (ROM). By augmenting the linear basis with a small set of discontinuous basis functions, ROMs of systems with local nonlinearities have been shown to compare well with the corresponding full order models.When evaluating the quality of a ROM, it is common to compare the time response of the model to that of the full order system, but the time response is a complicated function that depends on a predetermined set of initial conditions or external force. This is difficult to use as a metric to measure convergence of a ROM, particularly for systems with strong, non-smooth nonlinearities, for two reasons: (1) the accuracy of the response depends directly on the amplitude of the load/initial conditions, and (2) small differences between two signals can become large over time. Here, a validation metric is proposed that is based solely on the ROM’s equations of motion. The nonlinear normalmodes (NNMs) of the ROMs are computed and tracked as modes are added to the basis set. The NNMs are expected to converge to the true NNMs of the full order system with a sufficient set of basis vectors. This comparison captures the effect of the nonlinearity through a range of amplitudes of the system, and is akin to comparing natural frequencies and mode shapes for a linear structure. In this research, the convergencemetric is evaluated on a simply supported beam with a contacting nonlinearity modeled as a unilateral piecewise-linear function. Various time responses are compared to show that the NNMs provide a good measure of the accuracy of the ROM. The results suggest the feasibility of using NNMs as a convergencemetric for reduced order modeling of systems with various types of nonlinearities.

More Details

Parameterized reduced-order models using hyper-dual numbers

Brake, M.R.W.

The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize the effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.

More Details

Proceedings of the Third International Workshop on Jointed Structures

Starr, Michael; Brake, M.R.W.; Segalman, Daniel J.

The Third International Workshop on Jointed Structures was held from August 16th to 17th, 2012, in Chicago Illinois, following the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Thirty two researchers from both the United States and international locations convened to discuss the recent progress of mechanical joints related research and associated efforts in addition to developing a roadmap for the challenges to be addressed over the next five to ten years. These proceedings from the workshop include the minutes of the discussions and follow up from the 2009 workshop [1], presentations, and outcomes of the workshop. Specifically, twelve challenges were formulated from the discussions at the workshop, which focus on developing a better understanding of uncertainty and variability in jointed structures, incorporating high fidelity models of joints in simulations that are tractable/efficient, motivating a new generation of researchers and funding agents as to the importance of joint mechanics research, and developing new insights into the physical phenomena that give rise to energy dissipation in jointed structures. The ultimate goal of these research efforts is to develop a predictive model of joint mechanics.

More Details

IMEX-a :

Brake, M.R.W.

This report presents an efficient and accurate method for integrating a system of ordinary differential equations, particularly those arising from a spatial discretization of partially differential equations. The algorithm developed, termed the IMEX a algorithm, belongs to a class of algorithms known as implicit-explicit (IMEX) methods. The explicit step is based on a fifth order Runge-Kutta explicit step known as the Dormand-Prince algorithm, which adaptively modifies the time step by calculating the error relative to a fourth order estimation. The implicit step, which follows the explicit step, is based on a backward Euler method, a special case of the generalized trapezoidal method. Reasons for choosing both of these methods, along with the algorithm development are presented. In applications that have less stringent accuracy requirements, several other methods are available through the IMEX a toolbox, each of which simplify the fifth order Dormand-Prince explicit step: the third order Bogacki-Shampine method, the second order Midpoint method, and the first order Euler method. The performance of the algorithm is evaluated on to examples. First, a two pawl system with contact is modeled. Results predicted by the IMEX a algorithm are compared to those predicted by six widely used integration schemes. The IMEX a algorithm is demonstrated to be significantly faster (by up to an order of magnitude) and at least as accurate as all of the other methods considered. A second example, an acoustic standing wave, is presented in order to assess the accuracy of the IMEX a algorithm. Finally, sample code is given in order to demonstrate the implementation of the proposed algorithm.

More Details

The effect of the contact model on impact-vibration response

Vibration Institute Annual Training Conference 2012

Brake, M.R.W.

Impact is a phenomenon that is ubiquitous in mechanical design; however, the modeling of impacts in complex systems is often a simplified, imprecise process. In high fidelity finite element simulations, the number of elements required to accurately model the constitutive properties of an impact event is impractical. Consequently, rigid body dynamics with approximate representations of the impact dynamics are commonly used. These approximations can include a constant coefficient of restitution, penalty stiffness, or single degree of freedom constitutive model for the impact dynamics that is specific to the type of materials involved (elastic-plastic, viscoelastic, etc.). In order to understand the effect of the impact model on the system's dynamics, simulations investigate single degree of freedom and two degrees of freedom systems with rigid stops limiting the amplitude of vibration. Five contact models are considered: a coefficient of restitution, penalty stiffness, two similar elastic-plastic constitutive models, and a dissimilar elastic-plastic constitutive model. Frequency sweeps show that simplified contact models can lead to incorrect assessments of the system's dynamics and stability, which can significantly affect the prediction of wear and damage in the system.

More Details

A new approach to modeling discrete nonlinear constraints in continuous systems: The method of discontinuous basis functions

Proceedings of the ASME Design Engineering Technical Conference

Brake, M.R.W.; Segalman, Daniel J.

Solutions for analytical models of systems with nonlinear constraints have focused on exact methods for satisfying the constraint conditions. Exact methods often require that the constraint can be expressed in a piecewise-linear manner, and result in a series of mapping equations from one linear regime of the constraint to the next. Due to the complexity of these methods, exact methods are often limited to analyzing a small number of constraints for practical reasons. This paper proposes a new method for analyzing continuous systems with arbitrary nonlinear constraints by approximately satisfying the constraint conditions. Instead of dividing the constraints into multiple linear regimes, a discontinuous basis function is used to supplement the system's linear basis functions. As a result, precise contact times are not needed, enabling this method to be more computationally efficient than exact methods. While the discontinuous basis functions are continuous in displacement, their derivatives contain discontinuities that allow for the nonlinear forces to be accounted for with the assumption that the nonlinear constraints are able to be modeled in a discrete manner. Since each nonlinear constraint requires only one associated discontinuous basis function, this method is easily expanded to handle large numbers of constraints. In order to illustrate the application of this method, an example with a pinned-pinned beam is presented. © 2011 by ASME.

More Details

Task conflict and idea sharing in interdisciplinary research groups: Diversity salience matters

Academy of Management 2011 Annual Meeting - West Meets East: Enlightening. Balancing. Transcending, AOM 2011

Todorova, Gergana; Brake, M.R.W.; Weingart, Laurie

Although interdisciplinary research attracts more and more interest and effort, the benefits of this type of research are not always realized. To understand when expertise diversity will have positive or negative effects on research efforts, we examine how expertise diversity and diversity salience affect task conflict and idea sharing in interdisciplinary research groups. Using data from 148 researchers in 29 academic research labs, we provide evidence on the importance of social categorization states (i.e., expertise diversity salience) in understanding both the information processes (i.e., task conflict) and the creativity processes (i.e., idea sharing) in groups with expertise diversity. We show that expertise diversity can either increase or decrease task conflict depending on the salience of group members' expertise in a curvilinear way: at a medium level of expertise diversity the moderating effect of diversity salience is strongest. Furthermore, enriched group work design can strengthen the benefits of task conflict for creative idea sharing only when expertise diversity salience is low. Finally, we show that idea sharing predicts group performance in interdisciplinary academic research labs over and above task conflict.

More Details

A hybrid approach for the modal analysis of continuous systems with localized nonlinear constraints

Brake, M.R.W.

The analysis of continuous systems with nonlinearities in their domain have previously been limited to either numerical approaches, or analytical methods that are constrained in the parameter space, boundary conditions, or order of the system. The present analysis develops a robust method for studying continuous systems with arbitrary boundary conditions and nonlinearities using the assumption that the nonlinear constraint can be modeled with a piecewise-linear force-deflection constitutive relationship. Under this assumption, a superposition method is used to generate homogeneous boundary conditions, and modal analysis is used to find the displacement of the system in each state of the piecewise-linear nonlinearity. In order to map across each nonlinearity in the piecewise-linear force-deflection profile, a variational calculus approach is taken that minimizes the L2 energy norm between the previous and current states. To illustrate this method, a leaf spring coupled with a connector pin immersed in a viscous fluid is modeled as a beam with a piecewise-linear constraint. From the results of the convergence and parameter studies, a high correlation between the finite-time Lyapunov exponents and the contact time per period of the excitation is observed. The parameter studies also indicate that when the system's parameters are changed in order to reduce the magnitude of the velocity impact between the leaf spring and connector pin, the extent of the regions over which a chaotic response is observed increases.

More Details

Reduced order modeling of fluid/structure interaction

Barone, Matthew F.; Tezaur, Irina K.; Brake, M.R.W.; Segalman, Daniel J.

This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

More Details

The Sandia MEMS passive shock sensor : FY08 design summary

Wittwer, Jonathan W.; Baker, Michael S.; Mitchell, John A.; Epp, David S.; Clemens, Rebecca C.; Brake, M.R.W.; Walraven, Jeremy

This report summarizes design and modeling activities for the MEMS passive shock sensor. It provides a description of past design revisions, including the purposes and major differences between design revisions but with a focus on Revisions 4 through 7 and the work performed in fiscal year 2008 (FY08). This report is a reference for comparing different designs; it summarizes design parameters and analysis results, and identifies test structures. It also highlights some of the changes and or additions to models previously documented [Mitchell et al. 2006, Mitchell et al. 2008] such as the way uncertainty thresholds are analyzed and reported. It also includes dynamic simulation results used to investigate how positioning of hard stops may reduce vibration sensitivity.

More Details

The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness

Epp, David S.; Brake, M.R.W.; Baker, Michael S.; Wittwer, Jonathan W.; Clemens, Rebecca C.; Mitchell, John A.; Walraven, Jeremy

This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

More Details
139 Results
139 Results