Publications

Results 26–50 of 258

Search results

Jump to search filters

Defect suppression in wet-treated etched-and-regrown nonpolar m -plane GaN vertical Schottky diodes: A deep-level optical spectroscopy analysis

Journal of Applied Physics

Aragon, Andrew; Monavarian, Morteza; Pickrell, Gregory P.; Crawford, Mary H.; Allerman, A.A.; Feezell, Daniel; Armstrong, Andrew A.

Steady-state photocapacitance (SSPC) was conducted on nonpolar m-plane GaN n-type Schottky diodes to evaluate the defects induced by inductively coupled plasma (ICP) dry etching in etched-and-regrown unipolar structures. An ∼10× increase in the near-midgap Ec - 1.9 eV level compared to an as-grown material was observed. Defect levels associated with regrowth without an etch were also investigated. The defects in the regrown structure (without an etch) are highly spatially localized to the regrowth interface. Subsequently, by depth profiling an etched-and-regrown sample, we show that the intensities of the defect-related SSPC features associated with dry etching depend strongly on the depth away from the regrowth interface, which is also reported previously [Nedy et al., Semicond. Sci. Technol. 30, 085019 (2015); Fang et al., Jpn. J. Appl. Phys. 42, 4207-4212 (2003); and Cao et al., IEEE Trans. Electron Devices 47, 1320-1324 (2000)]. A photoelectrochemical etching (PEC) method and a wet AZ400K treatment are also introduced to reduce the etch-induced deep levels. A significant reduction in the density of deep levels is observed in the sample that was treated with PEC etching after dry etching and prior to regrowth. An ∼2× reduction in the density of Ec - 1.9 eV level compared to a reference etched-and-regrown structure was observed upon the application of PEC etching treatment prior to the regrowth. The PEC etching method is promising for reducing defects in selective-area doping for vertical power switching structures with complex geometries [Meyers et al., J. Electron. Mater. 49, 3481-3489 (2020)].

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.; Koehler, A.; Tadjer, M.; Hobart, K.; Ebrish, M.; Porter, M.; Martinez, R.; Zeng, K.; Ji, D.; Chowdhury, S.; Aktas, O.; Cooper, James A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Anderson, T.; Gallagher, J.; Jacobs, A.; Koehler, A.; Tadjer, M.; Hobart, K.; Ebrish, M.; Porter, M.; Martinez, R.; Zeng, K.; Ji, D.; Chowdhury, S.; Aktas, O.; Cooper, James A.

Abstract not provided.

Fully transparent GaN homojunction tunnel junction-enabled cascaded blue LEDs

Applied Physics Letters

Jamal-Eddine, Zane; Hasan, Syed M.N.; Gunning, Brendan P.; Chandrasekar, Hareesh; Jung, Hyemin; Crawford, Mary H.; Armstrong, Andrew A.; Arafin, Shamsul; Rajan, Siddharth

A sidewall activation process was optimized for buried magnesium-doped p-GaN layers yielding a significant reduction in tunnel junction-enabled light emitting diode (LED) forward voltage. This buried activation enabled the realization of cascaded blue LEDs with fully transparent GaN homojunction tunnel junctions. The initial optimization of buried p-GaN activation was performed on PN junctions grown by metal organic chemical vapor deposition (MOCVD) buried under hybrid tunnel junctions grown by MOCVD and molecular beam epitaxy. Next the activation process was implemented in cascaded blue LEDs emitting at 450 nm, which were enabled by fully transparent GaN homojunction tunnel junctions. The tunnel junction-enabled multi-active region blue LEDs were grown monolithically by MOCVD. This work demonstrates a state-of-the-art tunnel junction-enabled cascaded LED utilizing homojunction tunnel junctions which do not contain any heterojunction interface.

More Details

High voltage GaN p-n diodes formed by selective area regrowth

Electronics Letters

Armstrong, Andrew A.; Pickrell, Gregory P.; Allerman, A.A.; Crawford, Mary H.; Glaser, Caleb E.; Smith, Trevor S.; Abate, Vincent M.

GaN p-n diodes were formed by selective area regrowth on freestanding GaN substrates using a dry etch, followed by post-etch surface treatment to reduce etch-induced defects, and subsequent regrowth into wells. Etched-and-regrown diodes with a 150 μm diameter achieved 840 V operation at 0.5 A/cm2 reverse current leakage and a specific on-resistance of 1.2 mΩ·cm2. Etched-and-regrown diodes were compared with planar, regrown diodes without etching on the same wafer. Both types of diodes exhibited similar forward and reverse electrical characteristics, which indicate that etch-induced defectivity of the junction was sufficiently mitigated so as not to be the primary cause for leakage. An area dependence for forward and reverse leakage current density was observed, suggesting that the mesa sidewall provided a leakage path.

More Details

Interfacial Impurities and Their Electronic Signatures in High-Voltage Regrown Nonpolar m-Plane GaN Vertical p–n Diodes

Physica Status Solidi. A, Applications and Materials Science

Aragon, Andrew; Monavarian, Morteza; Stricklin, Isaac; Pickrell, Gregory P.; Crawford, Mary H.; Allerman, A.A.; Armstrong, Andrew A.; Feezell, Daniel

Impacts of silicon, carbon, and oxygen interfacial impurities on the performance of high-voltage vertical GaN-based p–n diodes are investigated. The results indicate that moderate levels (≈5 × 1017 cm-3) of all interfacial impurities lead to reverse blocking voltages (Vb) greater than 200 V at 1 μA cm-2 and forward leakage of less than 1 µA cm-2 at 1.7 V. At higher interfacial impurity levels, the performance of the diodes becomes compromised. Herein, it is concluded that each impurity has a different effect on the device performance. For example, a high carbon spike at the junction correlates with high off-state leakage current in forward bias (≈100× higher forward leakage current compared with a reference diode), whereas the reverse bias behavior is not severely affected (> 200 V at 1 μA cm-2). High silicon and oxygen spikes at the junction strongly affect the reverse leakage currents (≈ 1–10 V at 1 μA cm-2). Regrown diodes with impurity (silicon, oxygen, and carbon) levels below 5 × 1017 cm-3 show comparable forward and reverse results with the reference continuously grown diodes. The effect of the regrowth interface position relative to the metallurgical junction on the diode performance is also discussed.

More Details

Investigation of dry-etch-induced defects in >600 v regrown, vertical, GaN, p-n diodes using deep-level optical spectroscopy

Journal of Applied Physics

Pickrell, Gregory P.; Armstrong, Andrew A.; Allerman, A.A.; Crawford, Mary H.; Glaser, Caleb E.; Kempisty, Jeffrey M.; Abate, Vincent M.

The impact of dry-etch-induced defects on the electrical performance of regrown, c-plane, GaN p-n diodes where the p-GaN layer is formed by epitaxial regrowth using metal-organic, chemical-vapor deposition was investigated. Diode leakage increased significantly for etched-and-regrown diodes compared to continuously grown diodes, suggesting a defect-mediated leakage mechanism. Deep level optical spectroscopy (DLOS) techniques were used to identify energy levels and densities of defect states to understand etch-induced damage in regrown devices. DLOS results showed the creation of an emergent, mid-gap defect state at 1.90 eV below the conduction band edge for etched-and-regrown diodes. Reduction in both the reverse leakage and the concentration of the 1.90 eV mid-gap state was achieved using a wet chemical treatment on the etched surface before regrowth, suggesting that the 1.90 eV deep level contributes to increased leakage and premature breakdown but can be mitigated with proper post-etch treatments to achieve >600 V reverse breakdown operation.

More Details
Results 26–50 of 258
Results 26–50 of 258