Solid-State THz Microelectronics (Invited)
Abstract not provided.
Abstract not provided.
LDRD Project 102662 provided support to pursue experiments aimed at measuring the basic electrodynamic response and possible applications of carbon nanotubes and silicon nanowires at radiofrequency to microwave frequencies, approximately 0.01 to 50 GHz. Under this project, a method was developed to integrate these nanomaterials onto high-frequency compatible co-planar waveguides. The complex reflection and transmission coefficients of the nanomaterials was studied as a function of frequency. From these data, the high-frequency loss characteristics of the nanomaterials were deduced. These data are useful to predict frequency dependence and power dissipation characteristics in new rf/microwave devices incorporating new nanomaterials.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
A split-grating-gate detector design has been implemented in an effort to combine the tunabiliry of the basic gratinggate detector with the high responsivity observed in these detectors when approaching the pinchoff regime. The redesign of the gates by itself offers several orders of magnitude improvement in resonant responsivity. Further improvements are gained by placing the detector element on a thermally isolating membrane in order to increase the effects of lattice heating on the device response.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
LDRD Project 86361 provided support to upgrade the chemical and material spectral signature measurement and detection capabilities of Sandia National Laboratories using the terahertz (THz) portion of the electromagnetic spectrum, which includes frequencies between 0.1 to 10 THz. Under this project, a THz time-domain spectrometer was completed. This instrument measures sample absorption spectra coherently, obtaining both magnitude and phase of the absorption signal, and has shown an operating signal-to-noise ratio of 10{sub 4}. Additionally, various gas cells and a reflectometer were added to an existing high-resolution THz Fourier transform spectrometer, which greatly extend the functionality of this spectrometer. Finally, preliminary efforts to design an integrated THz transceiver based on a quantum cascade laser were begun.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
A grating-gated field-effect transistor fabricated from a single-quantum well in a high-mobility GaAs-AlGaAs heterostructure is shown to function as a continuously electrically tunable photodetector of terahertz radiation via excitation of resonant plasmon modes in the well. Different harmonics of the plasmon wave vector are mapped, showing different branches of the dispersion relation. As a function of temperature, the resonant response magnitude peaks at around 30 K. Both photovoltaic and photoconductive responses have been observed under different incident power and bias conditions.
Proposed for publication in Physical Review Letters.
Measurements of the single-particle density of states (DOS) near T=0 ?K in Si:B are used to construct an energy-density phase diagram of Coulomb interactions across the critical density n{sub c} of the metal-insulator transition. Insulators and metals are found to be distinguishable only below a phase boundary (|n/n{sub c}-1|) determined by the Coulomb energy. Above ? is a mixed state where metals and insulators equidistant from n{sub c} cannot be distinguished from their DOS structure. The data imply a diverging screening radius at n{sub c}, which may signal an interaction-driven thermodynamic state change.