Technique to determine average release behavior of liquids
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Eulerian hydrocode, CTH, has been used to study the interaction of hypervelocity flyer plates with thin targets at velocities from 6 to 11 km/s. These penetrating impacts produce debris clouds that are subsequently allowed to stagnate against downstream witness plates. Velocity histories from this latter plate are used to infer the evolution and propagation of the debris cloud. This analysis, which is a companion to a parallel experimental effort, examined both numerical and physics-based issues. We conclude that numerical resolution and convergence are important in ways we had not anticipated. The calculated release from the extreme states generated by the initial impact shows discrepancies with related experimental observations, and indicates that even for well-known materials (e.g., aluminum), high-temperature failure criteria are not well understood, and that non-equilibrium or rate-dependent equations of state may be influencing the results.
Proposed for publication in Journal of Applied Physics.
Boron carbide displays a rich response to dynamic compression that is not well understood. To address poorly understood aspects of behavior, including dynamic strength and the possibility of phase transformations, a series of plate impact experiments was performed that also included reshock and release configurations. Hugoniot data were obtained from the elastic limit (15-18 GPa) to 70 GPa and were found to agree reasonably well with the somewhat limited data in the literature. Using the Hugoniot data, as well as the reshock and release data, the possibility of the existence of one or more phase transitions was examined. There is tantalizing evidence, but at this time no phase transition can be conclusively demonstrated. However, the experimental data are consistent with a phase transition at a shock stress of about 40 GPa, though the volume change associated with it would have to be small. The reshock and release experiments also provide estimates of the shear stress and strength in the shocked state as well as a dynamic mean stress curve for the material. The material supports only a small shear stress in the shocked (Hugoniot) state, but it can support a much larger shear stress when loaded or unloaded from the shocked state. This strength in the shocked state is initially lower than the strength at the elastic limit but increases with pressure to about the same level. Also, the dynamic mean-stress curve estimated from reshock and release differs significantly from the hydrostate constructed from low-pressure data. Finally, a spatially resolved interferometer was used to directly measure spatial variations in particle velocity during the shock event. These spatially resolved measurements are consistent with previous work and suggest a nonuniform failure mode occurring in the material.
In the current study we are developing an experimental fracture material property test method specific to dynamic fragmentation. This test method allows the study of fracture fragmentation in a reproducible laboratory environment under well-controlled loading conditions. Motion and fragmentation of the specimen are diagnosed using framing camera, VISAR and soft recovery methods. Fragmentation properties of several steels, nitinol, tungsten alloy, copper, aluminum, and titanium have been obtained to date. The values for fragmentation toughness, and failure threshold will be reported, as well as effects in these values as the material strain-rate is varied through changes in wall thickness and impact conditions.
A systematic computational and experimental study is presented on impact generated debris resulting from record-high impact speeds recently achieved on the Sandia three-stage light-gas gun. In these experiments, a target plate of aluminum is impacted by a titanium-alloy flyer plate at speeds ranging from 6.5 to 11 km/s, producing pressures from 1 Mb to over 2.3 Mb, and temperatures as high as 15000 K (>1 eV). The aluminum plate is totally melted at stresses above 1.6 Mb. Upon release, the thermodynamic release isentropes will interact with the vapor dome. The amount of vapor generated in the debris cloud will depend on many factors such as the thickness of the aluminum plate, super-cooling, vaporization kinetics, the distance, and therefore time, over which the impact-generated debris is allowed to expand. To characterize the debris cloud, the velocity history produced by stagnation of the aluminum expansion products against a witness plate is measured using velocity interferometry. X-ray measurements of the debris cloud are also recorded prior to stagnation against an aluminum witness plate. Both radiographs and witness-plate velocity measurements suggest that the vaporization process is both time-dependent and heterogeneous when the material is released from shocked states around 230 GPa. Experiments suggest that the threshold for vaporization kinetics in aluminum should become significant when expanded from shocked states over 230 GPa. Numerical simulations are conducted to compare the measured x-ray radiographs of the debris cloud and the time-resolved experimental interferometer record with calculational results using the 3-D hydrodynamic wavecode, CTH. Results of these experiments and calculations are discussed in this paper.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories has developed a unique method for a hyper-velocity launch (HVL), the three-stage gun. The three-stage gun is a modified two-stage light-gas gun, consisting of a piston used in the first stage, an impactor in the second stage, and a flyer plate in the third stage. The impactor is made up of different material layers that are increasing in shock impedance. The graded or pillowed layers allow the flyer to be launched at velocities up to 16 km/s without the formation of a single shock wave in the flyer plate and without it melting. Under certain experimental conditions the flyer velocity cannot be measured by standard means, X-rays and VISAR. Also, there is a need to know the flyer velocity prior to a launch in order to calibrate instruments and determine the appropriate shot configuration. The objective of HVL{_}CTH is to produce an accurate forecast of the flyer plate velocity under different launch conditions. CTH is a Eulerian shock physics computational analysis package developed at Sandia National Laboratories. Using CTH requires knowledge of its syntax and capabilities. HVL{_}CTH allows the user to easily interface with CTH, through the use of Fortran programs and batch files, in order to simulate the three-stage launch of a flyer plate. The program, HVL{_}CTH, requires little to no knowledge of the CTH program and greatly reduces the time needed to calculate the flyer velocity. Users of HVL{_}CTH are assumed to have no experience with CTH. The results from HVL{_}CTH were compared to results of X-ray and VISAR measurements obtained from HVL experiments. The comparisons show that HVL{_}CTH was within 1-2% of the X-Ray and VISAR results most of the time.
Abstract not provided.
Abstract not provided.
The unique properties of carbon have made it both a fascinating and an important subject of experimental and theoretical studies for many years [1]-[4]. The contrast between its best-known elemental forms, graphite and diamond, is particularly striking. Graphite is black, has a rather low density and high compressibility (close to that of magnesium), and is greasy enough to be useful as a lubricant and in pencil leads. Diamond is brilliantly translucent, 60% more dense than graphite, less compressible than either tungsten or corundum, and its hardness makes it useful for polishing and cutting. This variability in properties, as well as that observed among the many classes of carbon compounds, arises because of profound differences in electronic structure of the carbon bonds [5]. A number of other solid forms of carbon are known. Pyrolytic graphite [6] is a polycrystalline material in which the individual crystallites have a structure quite similar to that of natural graphite. Fullerite (solid C 60), discovered only ten years ago [7], consists of giant molecules in which the atoms are arranged into pentagons and hexagons on the surface of a spherical cage. Amorphous carbon [8][9], including carbon black and ordinary soot, is a disordered form of graphite in which the hexagonally bonded layers are randomly oriented. Glassy carbons [9][10], on the other hand, have more random structures. Many other structures have been discussed [1][9].
In order to provide real-time data for validation of three dimensional numerical simulations of heterogeneous materials subjected to impact loading, an optically recording velocity interferometer system (ORVIS) has been adapted to a line-imaging instrument capable of generating precise mesoscopic scale measurements of spatially resolved velocity variations during dynamic deformation. Combining independently variable target magnification and interferometer fringe spacing, this instrument can probe a velocity field along line segments up to 15 mm in length. In high magnification operation, spatial resolution better than 10 {micro}m can be achieved. For events appropriate to short recording times, streak camera recording can provide temporal resolution better than 0.2 ns. A robust method for extracting spatially resolved velocity-time profiles from streak camera image data has been developed and incorporated into a computer program that utilizes a standard VISAR analysis platform. The use of line-imaging ORVIS to obtain measurements of the mesoscopic scale dynamic response of shocked samples has been demonstrated on several different classes of heterogeneous materials. Studies have focused on pressed, granular sugar as a simulant material for the widely used explosive HMX. For low-density (65% theoretical maximum density) pressings of sugar, material response has been investigated as a function of both impact velocity and changes in particle size distribution. The experimental results provide a consistent picture of the dispersive nature of the wave transmitted through these samples and reveal both transverse and longitudinal wave structures on mesoscopic scales. This observed behavior is consistent with the highly structured mesoscopic response predicted by 3-D simulations. Preliminary line-imaging ORVIS measurements on HMX as well as other heterogeneous materials such as foam and glass-reinforced polyester are also discussed.
Abstract not provided.
Understanding high pressure behavior of homogeneous as well as heterogeneous materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. At very high impact velocities, material properties will be subjugated to phase-changes, such as melting and vaporization. These phase states cannot be obtained through conventional gun technology. These processes need to be represented accurately in hydrodynamic codes to allow credible computational analysis of impact events resulting from hypervelocity impact. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 km/s. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology.
Abstract not provided.
Understanding high pressure behavior materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. Until recently the highest-pressure states in materials have been achieved from impact loading techniques from two-stage light gas guns with velocity limitations of approximately 81cm/s. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 kds. The determination of equation-of-state (EOS) and thermodynamic states of materials in the regimes of extreme high pressures is now attainable utilizing the three-stage launcher. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology. The design and test methodologies used to determine Hugoniot states are described in this paper.
In the present study, 10 impact tests were conducted on unpoled PZT 95/5, with 9% porosity and 2 at% Nb doping. These tests were instrumented to obtain time-resolved loading, unloading and span signatures. As well, PVDF gauges allowed shock timing to be established explicitly. The ferroelectric/antiferroelectric phases transition was manifested as a ramp to 0.4 GPa. The onset of crushup produced the most visible signature: a clear wave separation at 2.2 GPa followed by a highly dispersive wave. The end states also reflected crushup, and are consistent with earlier data and with related poled experiments. A span strength value of 0.17 GPa was measured for a shock stress of 0.5 GPa, this decreased to a very small value (no visible pullback signature) for a shock strength of 1.85 GPa.
Controlled impact methodology has been used on a powdergun to obtain dynamic behavior properties of Tributyl Phosphate (TBP). A novel test methodology is used to provide extremely accurate equation of state data of the liquid. A thin aluminum plate used for confining the liquid also serves as a diagnostic to provide reshock states and subsequent release adiabats from the reshocked state. Polar polymer, polyvinylidene fluoride (PVDF) gauges and velocity interferometer system for any reflector (VISAR) provided redundant and precise data of temporal resolution to five nanoseconds and shock velocity measurements of better than 1%. The design and test methodologies are presented in this paper.
Shock-induced depoling of the ferroelectric ceramic PZT 95/5 is utilized in a number of pulsed power devices. Several experimental and theoretical efforts are in progress in order to improve numerical simulations of these devices. In this study we have examined the shock response of normally poled PZT 95/5 under uniaxial strain conditions. On each experiment the current produced in an external circuit and the transmitted waveform at a window interface were recorded. The peak electrical field generated within the PZT sample was varied through the choice of external circuit resistance. Shock pressures were varied from 0.6 to 4.6 GPa, and peak electrical fields were varied from 0.2 to 37 kV/cm. For a 2.4 GPa shock and the lowest peak field, a nearly constant current governed simply by the remanent polarization and the shock velocity was recorded. Both decreasing the shock pressure and increasing the electrical field resulted in reduced current generation, indicating a retardation of the depoling kinetics.
Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.
A new test methodology is described which allows access to loading rates that lie between split Hopkinson bar and shock-loading techniques. Gas gun experiments combined with velocity interferometry techniques have been used to experimentally determine the intermediate strain-rate loading behavior of Coors AD995 alumina and Cercom silicon-carbide rods. Graded-density materials have been used as impactors; thereby eliminating the tension states generated by the radial stress components during the loading phase. Results of these experiments demonstrate that the time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod. This allows access to intermediate loading rates over 5 x 10{sup 3}/s to a few times 10{sup 4}/s.
Chemical Physics Reports
Record-high impact speeds achieved using the Sandia Hyper Velocity Launcher have permitted a systematic study of shock-induced full vaporization of zinc. Pressures up to 5.5 Mbar and temperatures as high as 39000 K (∼3.4 eV) are induced in a thin zinc plate by impacting it with a tantalum flier at speeds up to 10.1 km/s. Such high pressures produce essentially full vaporization of the zinc because the thermodynamic release isentropes pass into the vapor dome near the critical point. To characterize vapor flow, the velocity history produced by stagnation of the zinc expansion products against a witness plate is measured with velocity interferometry. For each experiment, the time-resolved experimental interferometer record is compared with wave-code calculations using an analytical equation of state, called ANEOS, that is known to have performed quite well at lower impact speeds (less than -7 km/s) where vaporization is negligible. Significant discrepancies between experiment and calculation are shown to exist under conditions of the more recent higher impact speeds in excess of 7 km/s where the release isentrope appears to pass near the critical point.
Shock equation of state and strength data have been obtained on the explosive PBXW-128 over the pressure range O-3 GPa using gun impact techniques and velocity interferometry diagnostics. Nonlinear shock-velocity-versus-particle velocity behavior is observed. Possible mechanisms are discussed and a Hug.oniot equation of slate model for the data is provided.
Gas guns and velocity interferometric techniques have been used to determine the loading behavior of AD995 alumina rods 19 mm in diameter by 75 mm and 150 mm long, respectively. Graded-density materials were used to impact both bare and sleeved alumina rods while the velocity interferometer was used to monitor the axial-velocity of the free end of the rods. Results of these experiments demonstrate that (1) a time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod, and (2) the intermediate loading rates obtained in this configuration lie between split Hopkinson bar and shock-loading techniques.