Irradia&on Creep in Nanostructures Measured Using In-situ TEM
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Acta Materialia
Irradiation-induced void swelling remains a major challenge to nuclear reactor operation. Swelling may take years to initiate and often results in rapid material property degradation once started. Alloy development for advanced nuclear systems will require rapid characterization of the swelling breakaway dose in new alloys, yet this capability does not yet exist. We demonstrate that transient grating spectroscopy (TGS) can detect void swelling in single crystal copper via changes in surface acoustic wave (SAW) velocity. Scanning transmission electron microscopy (STEM) links the TGS-observed changes with void swelling-induced microstructural evolution. These results are considered in the context of previous work to suggest that in situ TGS will be able to rapidly determine when new bulk materials begin void swelling, shortening alloy development and testing times.
Abstract not provided.
Abstract not provided.
Journal of Materials Research
Microstructure and phase evolution in magnetron sputtered nanocrystalline tungsten and tungsten alloy thin films are explored through in situ TEM annealing experiments at temperatures up to 1000 °C. Grain growth in unalloyed nanocrystalline tungsten transpires through a discontinuous process at temperatures up to 550 °C, which is coupled to an allotropic phase transformation of metastable β-tungsten with the A-15 cubic structure to stable body centered cubic (BCC) α-tungsten. Complete transformation to the BCC α-phase is accompanied by the convergence to a unimodal nanocrystalline structure at 650 °C, signaling a transition to continuous grain growth. Alloy films synthesized with compositions of W-20 at.% Ti and W-15 at.% Cr exhibit only the BCC α-phase in the as-deposited state, which indicate the addition of solute stabilizes the films against the formation of metastable β-tungsten. Thermal stability of the alloy films is significantly improved over their unalloyed counterpart up to 1000 °C, and grain coarsening occurs solely through a continuous growth process. The contrasting thermal stability between W-Ti and W-Cr is attributed to different grain boundary segregation states, thus demonstrating the critical role of grain boundary chemistry in the design of solute-stabilized nanocrystalline alloys.
Scripta Materialia
Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.
Ceramic Transactions
The corrosion of pulsed-laser deposited Fe thin films by aqueous acetic acid solution was explored in real time by performing dynamic microfluidic experiments in situ in a transmission electron microscope. The films were examined in both the as-deposited condition and after annealing. In the as-deposited films, discrete events featuring the localized dissolution of grains were observed with the dissolved volumes ranging in size from ~1.5 x 10-5 μm3 to 3.4 x 10-7 μm3. The annealed samples had larger grains than the as-deposited samples, were more resistant to corrosion, and did not show similar discrete dissolution events. The electron beam was observed to accelerate the corrosion, especially on the as-deposited samples. The effects of grain surface energy, grain boundary energy and the electron beam-specimen interactions are discussed in relation to the observed behavior.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Science
There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction that grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Thin Solid Films
Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr+ beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 × 1010 to 3.26 × 1014 ions/cm2, corresponding to displacement per atom (dpa) of 2.1 × 10− 4 to 2.28. Transmission electron microscopy showed significant grain growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. Up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 × 1014 ions/cm2).
Materials
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia's in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g.; for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.
Acta Materialia
In the absence of pre-existing failure-critical defects, the fracture or tearing process in deformable metals loaded in tension begins with the nucleation of internal cavities or voids in regions of elevated triaxial stress. While ductile rupture processes initiate at inclusions or precipitates in many alloys, nucleation in pure metals is often assumed to be associated with grain boundaries or triple junctions. This study presents ex situ observations of incipient, subsurface void nucleation in pure tantalum during interrupted uniaxial tensile tests using electron channeling contrast (ECC) imaging, electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). Instead of forming at grain boundaries, voids initiated at and grew along dislocation cell and cell block boundaries created by plastic deformation. Most of the voids were associated with extended, lamellar deformation-induced boundaries that run along the traces of the {110} or {112} planes, though a few voids initiated at low-angle dislocation subgrain boundaries. In general, a high density of deformation-induced boundaries was observed near the voids. TEM and TKD demonstrate that voids initiate at and grow along cell block boundaries. Two mechanisms for void nucleation in pure metals, vacancy condensation and stored energy dissipation, are discussed in light of these results. The observations of the present investigation suggest that voids in pure materials nucleate by vacancy condensation and subsequently grow by consuming dislocations.
Abstract not provided.
MRS Communications
Zirconium thin films were irradiated at room temperature with an 800 keV Zr+ beam using a 6 MV HVE Tandem accelerator to 1.36 displacement per atom damage. Freestanding tensile specimens, 100 nm thick and 10 nm grain size, were tested in situ inside a transmission electron microscope. Significant grain growth (>300%), texture evolution, and displacement damage defects were observed. Stress-strain profiles were mostly linear elastic below 20 nm grain size, but above this limit, the samples demonstrated yielding and strain hardening. Experimental results support the hypothesis that grain boundaries in nanocrystalline metals act as very effective defect sinks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Nuclear Materials
This work reports on irradiation-induced creep (IIC) measured on nanolaminate (Cu-W and Ni-Ag) and nanocrystalline alloys (Cu-W) at room temperature using a combination of heavy ion irradiation and nanopillar compression performed concurrently in situ in a transmission electron microscope. Appreciable IIC is observed in multilayers with 50 nm layer thicknesses at high stress, ≈½ the yield strength, but not in multilayers with only 5 nm layer thicknesses.
Journal of Materials Science
The impact on the final morphology of yttria (Y2O3) nanoparticles from different ratios (100/0, 90/10, 65/35, and 50/50) of oleylamine (ON) and oleic acid (OA) via a solution precipitation route has been determined. In all instances, powder X-ray diffraction indicated that the cubic Y2O3 phase (PDF #00-025-1200) with the space group I-3a (206) had been formed. Analysis of the collected FTIR data revealed the presence of stretches and bends consistent with ON and OA, for all ratios investigated, except the 100/0. Transmission electron microscopy images revealed regular and elongated hexagons were produced for the ON (100/0) sample. As OA was added, the nanoparticle morphology changed to lamellar pillars (90/10), then irregular particles (65/35), and finally plates (50/50). The formation of the hexagonal-shaped nanoparticles was determined to be due to the preferential adsorption of ON onto the {101} planes. As OA was added to the reaction mixture, it was found that the {111} planes were preferentially coated, replacing ON from the surface, resulting in the various morphologies noted. The roles of the ratio of ON/OA in the synthesis of the nanocrystals were elucidated in the formation of the various Y2O3 morphologies, as well as a possible growth mechanism based on the experimental data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.